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Abstract 

Recent approaches based on deep neural 
networks have shown promising results for 
natural language understanding. However, 
those models are evaluated on monolin-
gual corpus. In this work, we present a 
semantic decoder based on convolutional 
neural network and long-short term 
memory network to exploit a current us-
er‟s utterance and previous system‟s utter-
ances. It is shown that our model is multi-
linguistically applicable by classifying a 
set of dialogue act-slot pairs on both cor-
pora built in Korean and English. 

1 Introduction 

Natural language understanding (NLU) has been 
one of the most rudimentary components in hu-
man-machine conversation (Wang et al., 2015). 
In order to achieve NLU, there is a need to cap-
ture pragmatic intention and to extract semantic 
meanings from an almost infinite variety of a us-
er‟s utterances in the middle of dialogues. In the 
light of this situation, a semantic decoder should 
be able to consider both the current user‟s utter-
ances and the previous conversation. Although 
Rojas-Barahona et al. (2016) proposes a joint 
model that is capable of capturing both sentence- 
and context- representation, their work is only 
evaluated on English corpora (i.e., DSTC2 and 
in-car datasets). This naturally raises a question 
whether this joint model could be extended across 
different languages.  

The aims of this study are two folds: first, to 
build a robust semantic decoder by concatenating 
two deep neural networks to exploit multiple in-
puts, and secondly to conduct a dialogue act-slot 
pairs classification task on two corpora – one for 

Korean (i.e., SGDSG1) and the other for English 
dialogues (i.e., DSTC2). To fulfill this objective, 
we will briefly review previous studies of NLU in 
section 2. Section 3 will present the details of the 
architecture of our concatenated model, and sec-
tion 4 will summarize the experimental set up. 
Section 5 will provide the experiment result that 
shows the robustness of our semantic decoder. In 
Section 6, we will conclude the paper and re-
marks on main findings of our study with impli-
cation of our future research. 

2 Related Works 

With the development of deep learning, typical 
deep learning models such as convolutional neu-
ral networks (CNN) and recurrent neural net-
works (RNN) have achieved remarkable results 
in several natural language processing tasks (Kim 
2014; Mikolov 2010; Socher et al., 2012). Re-
cently, several researches have been conducted by 
combining CNN and RNN models. Kim (2016) 
proposes a recurrent convolutional network 
(RCNN) model, in which the penultimate layer of 
CNN is connected to the recurrent layers in the 
RNN model to track a topic of a dialogue in hu-
man-human conversations.  

Another jointed CNN and RNN model pro-
posed by Rojas-Barahona et al. (2016) is different 
from previous CNN-RNN models, in that they 
optimize the model with two distinctive inputs: a 
current user‟ utterance and act-slot pairs of previ-
ous system utterances. In the task of decoding 
semantic meaning of spoken languages each in-
put is utilized in sentence representation and con-
text representation, respectively. 
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Figure 1. The Architecture of concatenated CNN-LSTM model. 

 
3 Models  

In this section, we will introduce the architecture 
of our semantic decoder, as illustrated in Figure 1. 

3.1 Convolutional Neural Network 

Our model for predicting a correct set of dialogue 
act-slot pairs from a corresponding user utterance 
is based on the CNN architecture proposed by 
Collobert et al. (2011) and Kim (2014). In this ar-
chitecture, a sentence of length 𝑛 is represented as 
a 𝑛 × 𝑘 matrix. Each row of the matrix is a 𝑘 di-
mensional morpheme embedding vector 𝑥𝑖 ∈ ℝ𝑘 
representing the 𝑖 -th word in a sentence. Each 
word in a sentence is segmented into several mor-
phemes by Komoran 2  (Park and Cho, 2014), 
which are initialized into embedding vectors for 
an input layer. 

A convolutional operation involves a filter 
𝒎 ∈ ℝ ℎ×𝑘 is applied to a window of  ℎ rows to 
produce a feature:  

𝑐𝑖 = 𝑓(𝒎 ∙ 𝑥𝑖 𝑖 ℎ  + 𝑏) ,    (1) 
where 𝑓  is a hyperbolic tangent function and 
𝑏 ∈ ℝ is a bias term. These series of convolution-
al operations are applied to all the possible win-
dows and generate a feature map: 

𝒄 = ,𝑐 , 𝑐 , … , 𝑐  ℎ  - .  (2) 
Then a max pooling is operated to take the maxi-
mum value 𝑐̂ = max *𝒄+ as a representative fea-
ture for the filter. 

In our model, multiple filters with varying win-
dow size ℎ are integrally engaged to obtain multi-
                                                      
2 Though Komoran is one of Korean POS-taggers, we use it 
to segment the words in an utterance, and do not encode any 
morphosyntactic information tagged to each morpheme. 

ple adjacent features. These features are then con-
catenated to form the „top-level‟ feature vector 𝑠𝑡, 
which embeds features of a user utterance at a dia-
logue turn 𝑡. 

3.2 Long-Short Term Memory Network 

Since each utterance is dependent on the previous 
utterances in a conversation, it is necessary to re-
fer to dialogue act-slot instances of a system‟s ut-
terance right before a user says. To receive assis-
tance from the previous system‟s utterances at an 
inter-utterance level as well, we employ a long-
short term memory (LSTM) (Hochreiter and 
Schmidhuber, 1997), a special kind of recurrent 
neural network (RNN) which is much better for 
preserving information over long periods of time 
than other kinds of traditional RNN.  

The structure of LSTM is divided into a 
memory cell 𝑐𝑡 and three gates: a forget gate 𝑓𝑡, 
an input gate 𝑖𝑡 and an output gate 𝑜𝑡. Three kinds 
of gates functions to decide which amount of in-
formation the memory cell should keep or forget 
at a time step 𝑡. The input 𝑥𝑡 and the output ℎ𝑡 of 
LSTM are updated as follows: 

 𝑖𝑡 =  ( 𝑖 ∙ 𝑥𝑡 +  𝑖 ∙ ℎ𝑡  + 𝑏𝑖)  (3) 
 𝑓𝑡 =  (  ∙ 𝑥𝑡 +   ∙ ℎ𝑡  + 𝑏 )  (4) 
 𝑜𝑡 =  (  ∙ 𝑥𝑡 +   ∙ ℎ𝑡  + 𝑏 )  (5)  
  𝑡 = 𝑡 𝑛ℎ(  ∙ 𝑥𝑡 +   ∙ ℎ𝑡  + 𝑏 )  (6) 
 𝑐𝑡 = 𝑓𝑡   𝑐𝑡  + 𝑖𝑡    𝑡  (7) 
 ℎ𝑡 = 𝑜𝑡   𝑡 𝑛ℎ (𝑐𝑡)  (8) 
where 𝑥𝑡 is the input at the current time step, ℎ𝑡 is 
the hidden unit at time step 𝑡, 𝑏 is a bias term, 
 (∙) is a logistic sigmoid function and   denotes 
a point-wise multiplication operation.  
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Corpus U D L C 
SGDSG 6,480 1,529 33 1.48 

DSTC2_train 11,677 3,934 101 1.23 
DSTC2_test 1,612 506 76 1.20 

Table 2:  Statistics of SGDSG and DSTC2 cor-
pus. U: Number of utterances spoken by a user. 
D: Number of total dialogues. L: Size of all 
possible dialogue act-slot pairs in the corpus. 
C: Average number of dialogue act-slot pairs 
tagged per utterance. 

Corpus Speaker Utterance Act Slot Value 

SGDSG 

System 
무엇을 도와드릴까요? 

mwuesul towatulilkkayo? 
“How can I help you?” 

Hello N/A N/A 

User 
나 내일 회의일정 등록해줘. 

na nayil hoyuyilceng tunglokhaycwu. 
“Schedule a tomorrow‟s meeting.” 

Inform SYSTEM_ACTION create 
Inform DATE tomorrow 
Inform EVENT_TITLE meeting 

DSTC2 
System What kind of food would you like? Request FOOD N/A 

User Cheap Indian food Inform FOOD Indian 
Inform PRICE_RANGE cheap 

Table 1:  Example of a user‟s and system‟s utterances annotated with dialogue act-slot-value pairs. 

Unlike the model proposed by Rojas-Barahona 
et al. (2016), where the word vectors are fed into 
LSTM as inputs, we encode corresponding dialog 
act-slot pairs of previous system‟s utterances at a 
time step 𝑡 into a single multi-hot vector, and stip-
ulate them as the input 𝑥𝑡. As the single multi-hot 
vector represents multiple labels of dialogue act-
slot pairs as a whole and is fed into LSTM at a 
time t, it facilitates the network to grasp semantic 
information at an inter-utterance level more 
straightforward.  

3.3 Concatenating CNN and LSTM 

We notice that the contextual flow of a conversa-
tion works as just an auxiliary information in ex-
tracting the semantic meaning from the current us-
er‟s utterances. While feature vectors in the penul-
timate layer of CNN and RNN are merged by a 
tangent function in Rojas-Barahona et al. (2016), 
we concatenate the hidden unit ℎ𝑡 of LSTM to the 
„top-level‟ feature vector 𝑠𝑡 modeled by the CNN. 
Then, the concatenated vector ℎ̂𝑡 = 𝑠𝑡 ⨁ ℎ𝑡  is 
passed to a fully connected softmax layer whose 
output is the probability distribution over all labels 
of dialogue act-slot pairs as described in Figure 1. 
The softmax operation over each prediction is cal-
culated as follows: 

 ( 𝑘 =  |ℎ̂ , , 𝑏) =
    (   ℎ̂   )
∑     (   ℎ̂   ) 

         (8) 

where 𝑘 denotes the index of the multi-hot vector  , 
which represents the dialogue act-slot pairs of user‟s 
utterance. 

3.4 A Threshold Predictor 

In both datasets of SGDSG and DSTC2, more 
than one label of a dialogue act-slot pair is anno-
tated to a given single user‟s utterance. To per-
form this multi-label classification task, we use 
the output probability distribution 𝑝𝑘 for a given 
utterance   from the softmax layer. The predict-

ed multiple label of act-slot pairs  ̂ for an utter-
ance  , is determined by a threshold 𝑡 as follows:  

 ̂ = * 𝑘|𝑝𝑘  𝑡  𝑘 ∈  +  (9) 
The threshold learning mechanism used in the 
literature (Elisseeff and Weston, 2001; Nam et 
al., 2014) is adopted, which models 𝑡 with a line-
ar regression model. 

4 Experimental Setup 

4.1 Corpus Development 

Evaluation of model is conducted on two da-
tasets: SGDSG in Korean and DSTC2 (Hender-
son et al., 2014b) in English. Both corpora are 
annotated within the tagging framework (i.e., Di-
alogue act-slot-value triplets) of the DSTC2, as 

illustrated in Table 1. Since there has been exist-
ed no dialogue corpus in Korean, building a dia-
logue corpus with transcribed texts is the highest 
priority task in our research. The SGDSG corpus 
is collected on the topic of schedule management. 
The user is able to create, read, update, and de-
lete schedules. In each dialogue, the details such 
as start date, alert, event title, location are re-
quired for the system to access to or update data-
base.  

The DSTC2 corpus is collected for the pur-
pose of providing restaurant information in the 
city of Cambridge. The system searches a restau-
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Model Precision Recall F1-measure 

CNN  
(multiclass) 

73.43 
±0.32 

49.54 
±0.22 

59.16 
±0.26 

CNN  
(threshold) 

92.83 
±0.99 

90.77 
±1.14 

91.74 
±1.04 

CNN-LSTM 
(threshold) 

94.76 
±0.77 

94.45 
±0.94 

94.58 
±0.50 

Table 3: Evaluation of our models on the 
SGDSG corpus.  

      Model Precision Recall F1-measure 

CNN 
(Cambridge) 89.73 84.74 87.14 

CNN-LSTM_w4 
(Cambridge) 88.95 86.02 87.43 

CNN  
(threshold) 89.29 83.70 86.40 

CNN-LSTM 
(threshold) 88.34 85.96 87.18 

Table 4: Comparative results of different mod-
els on the DSTC2 corpus. rant by three constraints such as area, price range, 

and food type, and after specifying a certain 
place a user is able to query the system for other 
information such as address and phone number.  

4.2 Hyper-parameters and Training 

In our experiments, we use: filter windows (ℎ) of 
2, 3, 4 with 200 feature maps each for the CNN, 
dimension of 128 for the hidden unit of LSTM 
and a batch size of 60.  As a means of regulariza-
tion, we apply Dropout on the penultimate layers 
of both the CNN and the LSTM with dropout rate 
of 0.2. Those values are chosen by performing a 
rough grid search (Zhang and Wallace, 2016). The 
model undergoes training through stochastic gra-
dient descent over shuffled mini-batches with 
RMSprop update rule. Our model stops the iterant 
processes of learning by an early stopping mecha-
nism.  

4.3 Model Variations 

To evaluate the classification performance of our 
CNN-LSTM combined model, we compare the 
performance of three models3: 
 CNN (multiclass): The model that predicts 

only one dialogue act-slot for given user‟s 
utterance. 

 CNN (threshold): The CNN model with a 
threshold predictor that classifies multiple 
labels of dialogue act-slot pairs 

 CNN-LSTM (threshold): The concatenated 
CNN and LSTM model which allows to ex-
tract information from both a current user‟s 
and previous system‟ utterances. 

5 Results and Discussion 

As for the SGDSG corpus, we conduct a 5-fold 
cross validation task. All models iterate the evalu-
                                                      
3  Codes are available at https://github.com/hkhpub/cnn-
lstm-slu . 

ation process 20 times, and the mean scores and 
standard deviations of each evaluation metric are 
calculated. Table 3 summarizes the comparative 
results of each model on the SGDSG corpus. It is 
observed that the performance of the CNN model 
is significantly improved with the help of a 
threshold predictor, which enables the semantic 
decoder to predict multiple pairs of dialogue act-
slot. Further improvements are achieved by CNN-
LSTM model. It points that this conjoined model 
more effectively capture the semantic meaning by   
utilizing multiple inputs: a current user‟s utterance 
and previous system‟s utterances. 

We also evaluate our models on the DSTC2 
corpus built in English, whose experimental re-
sults are shown in Table 4. We observe that the 
concatenated CNN and LSTM model still main-
tain the desirable performance on English corpus 
as well, compared to the best-performing model 
on the DSTC2 corpus (Rojas-Barahona et al., 
2016). The results suggest that our CNN-LSTM 
model is solid and robust enough to conduct a 
NLU task regardless of what language the corpus 
is built in. It is worth noting that though Korean 
and English are morphologically far different, our 
CNN-LSTM model steadily predicts correct label 
set of dialogue act-slot pairs well, without using 
any manually designed feature or preprocessing 
the data through delexicalisation. 

6 Conclusion and Discussion 

In this paper we have presented a CNN-LSTM 
based approach to conduct a NLU task. We 
demonstrate that concatenating two networks fa-
cilitates a system to classify a correct set of labels 
for a given utterance, by using inputs at both ut-
terance and inter-utterance level. Our model 
achieves outstanding results on multi-lingual cor-
pora of dialogues.  We will extend our research to 
decode slot-value pairs in future research. 

https://github.com/hkhpub/cnn-lstm-slu
https://github.com/hkhpub/cnn-lstm-slu
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