Locality Constraint \sqrt{give} s an Insight into Suppletion

Hyunjung Lee hyunjung.lee@uni-leipzig.de Universität Leipzig

Irene Amato irene.amato@uni-leipzig.de Universität Leipzig

Nutshell

Suppletion is an interesting phenomenon, since it is subject to a general locality constraint on allomorphy and may thus display intervention effects (Harley, H. & R. Noyer 1999, Bobaljik 2012).

Embick's (2010) Adjacency Hypothesis:

- α β : α can condition β α - γ - β : γ blocks conditioning of β by α .
- Weak version of locality: Only heads with overt exponence count.
- Strong version of locality: All heads count.
- Chung (2009) has accounted for the interaction between negation and honorification in Korean, discussing defective intervention.
- We provide a new dataset about the three-way suppletive allomorphy of $\sqrt{\text{give}}$:
 - a. /tuli/ in cases of honorific datives
 - b. /tal/ in certain imperative contexts
 - c. /cwu/ elsewhere
- The insertion of the allomorph /tal/ is problematic for the strong version of locality:
- $\sqrt{\mathrm{VERB}}$ Neg Hon Tns Mod $\mathrm{C}_{[\mathrm{Imp}]}$

Research Questions:

What are grammatical restrictions imposed on the conditioning the suppletive allomorphy?

Background

- Distributed Morphology: division of labor between the components of grammar.
- Syntax only manipulates abstract morphosyntactic features.
- Morphology may adjust the structure.
- At Vocabulary Insertion, a morpheme is replaced by the phonological exponent of a Vocabulary Item if this matches all or a subset of the features in the morpheme (Subset Principle).
- Allomorphs are phonological exponents in competition for the same grammatical features.

Data

$/\mathrm{cwu}/\sim/\mathrm{tuli}/$

- The elsewhereform for \sqrt{give} is /cwu/, as in (3a-b).
- If the indirect object is honorified as in (3c), allomorph tuli/ blocks the elsewhere form /cwu/.
- a. Chingwu-ka na-ekey satang-ul **cwu**-ess-ta. friend-NOM I-DAT candy-ACC give-PST-DECL 'The friend gave me a candy.'
 - Sensayngnim-kkeyse na-ekey satang-ul teacher-HON.NOM I-DAT candy-ACC cwu-si-ess-ta. give-HON-PST-DECL
 - 'The teacher gave me a candy.' c. Nay-ka **sensayngnim-kkey** satang-ul I-NOM teacher-DAT.HON candy-ACC
 - tuli-ess-ta. give-PST-DECL 'I gave the teacher a candy.'

tuli/insertion is not problematic for the locality condition (cf. its lexical entry 7-a).

$/\mathrm{cwu}/\sim/\mathrm{tal}/$

- /tal/ is confined to imperative contexts in which the dative argument is coreferential with the speaker as in (4a):
- Speakerⁱ ... Addressee^j ... Recipientⁱ. /cwu/ appears as a free variant in the same context (4a).
- na-ekey satang-ul **cwu/tal**-la. a. (Ne) you.NOM I-DAT candy-ACC give/give-IMP 'Give me a candy.'
 - na-ekey satang-ul **cwu/*tal**-ci-ma-la. b. (Ne) you.NOM I-DAT candy-ACC give/give-CI-NEG-IMP 'Do not give me a candy.'
 - (Sensayngnim,) na-ekey satang-ul Teacher-HON.NOM I-DAT candy-ACC cwu/*tal-si-la. give/give-HON-IMP '(Teacher,) give me a candy (please).'

The free variation (4a) is problematic under every interpretation of the locality condition.

Assumption

- We assume a SAP projection on top of CP where Speaker and Addressee are located.
- The local context for vocabulary insertion is met through the following morphological operations:
- Pruning rule (Embick 2010):
 - $\sqrt{Root} \sim [\mathbf{x},\emptyset], [\mathbf{x},\emptyset] \sim Y \rightarrow \sqrt{Root} \sim Y$
 - **⇒** It eliminates nodes with zero exponents cyclically.
 - → We suggest this rule applies optinally.
- Node-sprouting rule (Choi & Harley 2017): $\operatorname{Hon^0}$ -sprouting rule: $v^0 \to [v^0 \operatorname{Hon^0}] / [\operatorname{DP}[+\operatorname{Hon}] [\dots v^0 \dots]]$
 - \rightarrow A sprouted [+Hon] agreement morpheme (Hon⁰) is adjoined to a v^0 node e. [Neg] \Leftrightarrow /mal/ / _ [IMP] c-commanded by a honorific nominative NP.
- Vocabulary items:
- a. $\sqrt{\text{GIVE}} \Leftrightarrow /\text{tal}//\text{DP}_{\text{DAT}}[\pi:\text{Speaker}] = [\text{IMP}]$ \Leftrightarrow /tuli/ / ___ DP_{DAT} [+HoN] ⇔ /cwu/ elsewhere
- b. $[Hon] \Leftrightarrow /si/$
- c. $[IMP] \Leftrightarrow /la/$
- d. $[PRS] \Leftrightarrow \emptyset$

Proposal

- Stringent locality constraint should be hold for suppletion.
- The free variation can be explained with the optional application of the morphological operation.

Analysis

/tal/ insertion

- The free variation between /tal/ and /cwu/ is explained by the (non-)application of the **Pruning** operation, which deletes the T node with [PRS] that has a zero exponent.
- Scenario 1: Pruning of T node
 - $\overline{[\text{CP } | \text{TP } ... | \text{VP } \text{DP}_{\text{dat}}^{\pi:\text{Speaker}} ...]} v + V_{j} + \sqrt{\text{GIVE}} T_{[PRS]} C_{[IMP]}$ $\Downarrow Pruning$

[CP [TP ... [vP ... [vP ... [vP DP_{dat} π :Speaker ...] $v + V_i + \sqrt{\text{GIVE}}$] $C_{\text{[IMP]}}$] ↓ Vocabulary Insertion

 $[CP]_{TP} \dots [vP]_{vP} \dots [VP]_{DP}_{dat}^{\pi:Speaker} \dots]v + V_i + /tal/]/la/$

Scenario 2: No Pruning $\overline{[\text{CP }[\text{TP }... [v_{\text{P}} ... [v_{\text{P}} \text{DP}_{\text{dat}}^{\pi:\text{Speaker}} ...] v + V_{j} + \sqrt{\text{GIVE}}] \mathbf{T}_{[PRS]}]] C_{[IMP]}}$ ↓ Vocabulary Insertion

[CP [TP ... [vP ... [vP ... [VP DP_{dat} π :Speaker ...] $v + V_j + /\mathbf{cwu}/$] \emptyset]] /la/]

Blocking effects for /tal/ insertion

- \rightarrow When the Addressee bears an [+HON] feature, it triggers v^0 to fission into $[v^0 \text{ Hon}^0]$ by Node-sprouting.
- \rightarrow **Hon**⁰ is an intervener between the verb root and the C head.

 $[SAP Addr_{[+HON]} [CP ... [VP DP_{dat}^{\pi:Speaker} ...] v + V_j + \sqrt{GIVE}] C_{[IMP]} ...]$ $\downarrow v^{0} \ Sprouting$ $[SAP \ \mathbf{Addr}_{[+HON]} \ [CP \ ... \ [VP \ DP_{dat} \ ... \] \ v + V_{j} + \sqrt{GIVE} + \mathbf{Hon^{0}}] \ C_{[IMP]}]]$ ↓ Vocabulary Insertion

 $[SAP ... [CP ... [VP DP_{dat}^{\pi:Speaker} ...] v + /cwu/ + /si/] /la/]]$

- → In this context, the (non-)application of Pruning does not affect the outcome.
- → As expected, /tal/ is blocked with intervening honorification as in (4c), and the same mechanism applies to the case of negation as in (4b).

Conclusion

- We have provided further evidence that a stringent locality condition must hold for conditioning suppletive allomorphy.
- Our analysis has accounted for the cases of (i) the transparent intervention effects and (ii) the opaque patterns (counterbleeding & counterfeeding)
 - under a strong locality condition.

Remaining Hard Nut

- We observe the clear patterns interwined of the benefective argument.
- a. [Aki²-lul wihey] na¹-ekey ku kal-ul $tal(\succ cwu)$ -o. baby-ACC for I-DAT that knife-ACC give-IMP 'Give me that knife for the sake of the baby.'
 - b. $[Emma^1$ -lul wihey] na^1 -ekey ku sacin-ul $cwu(\succ tal)$ -o. mom-ACC for I-DAT that picture-ACC give-IMP 'Give me that picture (so that I can give it to my mom).'
- How can preference of alternations regarding on relative saliency of recipients be explained?
- The difference of the actual recipient of the object determines the choice of allomorphs between /tal/ and /cwu/.
 - Speaker Recipient Benefective allomorph (11-a) | 1 (I)2 (baby) /tal/ > /cwu/(11-b)|1(I) = 2 (mom) = 2/cwu/ > /tal/