The Short Lifespan of Laryngeal Sonorants in Korean

Daniel Gleim & Hyunjung Lee University of Leipzig

OCP XVI, Università di Verona 2019

17th January 2019

Overview

A class of **sonorant/vowel final verb roots**, "**Fairy Roots**", shows seemingly disparate quirky patterns

- This pattern can be captured in a unified way with assuming underlying **floating features** and stratal OT
- The floating feature creates a laryngeal sonorant that is present only at an intermediate level of the derivation (Duke-of-York)
- Accounts with simpler representations face severe problems

Data

Basics

Laryngeal contrasts

- Korean has a three-way distinction in terms of laryngeal contrast in obstruents
- > This contrast is neutralised in coda position

```
    a. /kal/ [kal] 'Zacco platypus (which turns red when it is about to lay eggs)'
    b. /k<sup>h</sup>al/ [khal] 'knife'
    c. /k'al/ [kal] 'color'
```

- (2) a. $/pj \ni k/$ $[pj \ni k]$ 'wall' b. $/pu \ni k^h/$ $[pu. \ni k]$ 'kitchen' c. /pak'/ [pak] 'outside'
 - Vowels and sonorants do not show such contrasts on the surface!

Vowel Fairy Roots

- > Vowel final roots generally do not affect the plain obstruent initial suffixes (3-a) (4-a)
- > Fairy roots 🎉 idiosyncratically induce laryngeal contrasts onto these suffixes (3-b,c) (4-b,c)
- (3) a. $/\text{na-ta}/ \rightarrow [\text{na.ta}]$ 'occur' b. $/\text{na}^2$ -ta/ $\rightarrow [\text{na.t'a}]$ 'get.better' \mathfrak{F} c. $/\text{na}^{\text{h}}$ -ta/ $\rightarrow [\text{na.t}^{\text{h}}$ a] 'give.birth' \mathfrak{F}
- (4) a. $/\text{na-ko}/ \rightarrow [\text{na.ko}]$ 'occur' b. $/\text{na}^{?}\text{-ko}/ \rightarrow [\text{na.k'o}]$ 'get.better' c. $/\text{na}^{h}\text{-ko}/ \rightarrow [\text{na.k'o}]$ 'give.birth'

Sonorant Fairy Roots

- Sonorant-final roots may be fairy roots \(\mathbb{E}_{\text{,}} \), as well.
- > However, they are more restricted (cf. Albright & Kang 2009):
- (5) a. /al-ta/ \rightarrow [al.ta] 'know' b. /al^h-ta/ \rightarrow [al.t^ha] 'suffer' \mathscr{Z}
- (6) a. $/\operatorname{an}^{7}$ -ta/ \rightarrow [an.**t**'a] 'hug' b. $/\operatorname{an}^{h}$ -ta/ \rightarrow [an.**t**^ha] 'do.not'
- (7) $/\text{kam}^{?}$ -ta/ \rightarrow [kam.t'a] 'wind' \mathscr{Z}

Puzzles

Gliding and coaleascence

➤ The inflectional affix -ə/-a/-jə optionally coalesces/ induces gliding with a preceding vowel (cf. Jun & Albright 2017)

```
(8) a. /o-a/ \rightarrow [wa] 'come.INFL' b. /p<sup>h</sup>i-ə/ \rightarrow [p<sup>h</sup>jə] 'blossom.INFL' c. /na-a/ \rightarrow [na] 'occur.INFL'
```

Blocking of gliding and coalescence

➤ If this affix attaches to a fairy root ♣, gliding and coalescence are blocked

```
(9) a. /\text{co}^{\text{h}}\text{-a}/ \rightarrow [\text{co.a}] *[\text{cwa}] '\text{good.INFL'}
b. /\text{i}^{\text{?}}\text{-a}/ \rightarrow [\text{i.a}] *[\text{ja}] '\text{tie.INFL'}
c. /\text{na}^{\text{?}}\text{-a}/ \rightarrow [\text{na.a}] *[\text{na}] '\text{get.better.INFL'}
d. /\text{na}^{\text{h}}\text{-a}/ \rightarrow [\text{na.a}] *[\text{na}] '\text{give.birth.INFL'}
```

Gemination

Allomorph-less sonorant-initial affixes geminate, if attached to a fairy root 🏖

- (10)/po-ni/ \rightarrow [po.ni] 'see.Q'
 - $/m \rightarrow [m \rightarrow k.ni]$ 'eat.Q'
- a. $/co^h-ni/ \rightarrow [con.ni]$ 'be.goodQ' a. $/co^{h}-ni/ \rightarrow [con.ni]$ 'be.goodQ' b. $/na^{7}-ni/ \rightarrow [nan.ni]$ 'get.better.Q' c. $/na^{h}-ni/ \rightarrow [nan.ni]$ 'give.birth.Q' (11)

Allomorph selection 1

> Fairy roots unexpectedly select the elsewhere allomorph 'sɨmnita'

```
(12) a. /po/-\{mnita, simnita\} \rightarrow [pom.ni.ta] 'see.FORM'
```

b. $/m \ni k / - \{mnita, simnita\} \rightarrow [m \ni k. sim.ni.ta]$ 'eat.FORM'

```
(13) a. /co^h/-\{mnita, simnita\} \rightarrow [co.sim.ni.ta] 'be.good.FORM'
```

b. $/na^{7}/-\{mnita, simnita\} \rightarrow [na.sim.ni.ta]$ 'get.better.FORM'

Allomorph selection 2

More unexpected allomorph selection by fairy roots 🞉 can be observed with the elsewhere allomorph 'in'

- a. $/po/-\{n, in\} \rightarrow [pon]$ 'seen' (14)
 - b. $/m = k/-\{n, in\} \rightarrow [m = .k + in]$ 'eaten'
- a. $/co^h/-\{n, in\} \rightarrow [co.in]$ 'been.good' b. $/na^7/-\{n, in\} \rightarrow [na.in]$ 'got.better' (15)

Interim Summary

(16)coalescence allomorphy gemination Roots -C -C^h X -C' X X -C -Ch X -C' -Ch -C' -C'

Proposal

Assumptions

- Statal OT (Kiparsky 2000, Bermúdez-Otero 2011)
- Floating Features (Zoll 1993, 1996)
- Morphological Colour (Revithiadou 2007, van Oostendorp 2006, Trommer 2011, Zimmermann 2017)

Representation

> We propose that a floating laryngeal feature (+F) is a part of the underlying representation of fairy roots (**)

Derivation

- > We derive the three puzzles with a feeding/bleeding Duke-of-York gambit (Bermúdez-Otero 2001).
- > in the first stratum the floating feature
 - * docks to any affix
 - ⋆ influences allomorph selection
 - blocks coalescences/gliding
 - * induces gemination
- in the next stratum
 - the laryngeal specification is neutralised

Sample Illustration

Analysis

Constraints

- *FLOAT Assign * to every feature F that is not linked to a root node •
- ALTER Assign * to every epenthetic association line between elements having the same morphological color
- DEP Assign * to every epenthetic root node
- *V[?] Assign * to every vowel root node linked to [+cg]
- *V^h Assign * to every vowel root node linked to [+sg]

Stem-level Optimization

T_1 . Stem-level,

MaxF,	*FLOAT	$\gg^* V^h$
-------	--------	-------------

I: co +sg - a	MaxF	*FLOAT	DEP •	ALTER	*ν([+sg][-sg])	*V.V	*V ^h
O^1 : $co + sg$ a		*!				*	
™ O ² : co.a ^h						*	*
O ³ : cwa	*!	l I	l I	l I			*
O ⁴ : co.ha		l I	*!	 	 		l I
O ⁵ : cw ^h a ^h		l I	l I	*!			**
O ⁶ : cwa ^h					*!		*

- *ν([+sg][-sg]) Assign * to every nucleus linked to opposite values of [±sg] (cf. Kehrein & Golston 2004)
- *V.V Assign * to adjacent heterosyllabic vowels

Stem-level Optimization

T_1 . Stem-level,

MaxF, *F	LOAT	$\gg^* V^h$
----------	------	-------------

l: co +sg - a	MaxF	*FLOAT	DEP •	ALTER	*ν([+sg][-sg])	*V.V	*V ^h
O^1 : $co + sg$ a		*!	I			*	
™ O ² : co.a ^h		I	l I	I		*	*
O ³ : cwa	*!	l I	l I	l I			*
O ⁴ : co.ha		l I	*!	l I	 		l I
O ⁵ : cw ^h a ^h		I I	I I	*!	!		**
O ⁶ : cwa ^h		l	!	l	*!		*

At the stem level the laryngeal contrast can survive on any suffixes, even if they are Vowel/Sonorant.

Word-level Optimization

T ₂ . Word-level			$*V^h \gg$	MAXF
I: co.a ^h	*V ^h	ΜΑΧ(σ)	*V.V	MaxF
O ¹ : co.a ^h	*!	l		ı
$^{\square}$ O ² : co.a		 	*	*
O ³ : cwa		*!		*

 \rightarrow MAX(σ): Assign * to every input syllable which is not present in the output

At the word level the laryngeal specification is neutralised.

Duke-of-York Gambit

(20)

co ^(+sg) a	UR	AB C
coa ^h	Feature Docking	AB D
cannot apply	Gliding	_
coa	Feature Deletion	AB C

Stem level: Gemination

T_3 . Stem-level,

I: co +sg -ni	$S^h \to \mu$	ДЕР μ	*S ^h
O ¹ : co.n ^h i	*!		*
™ O ² : con ^h _μ i		*	**

- $ightharpoonup S^h
 ightarrow \mu$: Assign * to every laryngeally specified sonorant node which is not moraic
- Assumption: Geminates are moraic, whereas coda consonants are not moraic (There is no evidence for moraicity of codas).

Stem level: Gemination

 T_3 . Stem-level,

I: co +sg -ni	$S^h \to \mu$	ДЕР μ	*S ^h
O ¹ : co.n ^h i	*!		*
[™] O ² : con ^h _μ i		*	. *

At the stem level, a geminate with laryngeal specification is optimal

Stem level: Allomorph selection {in, n}

T₄. Stem-level, allomorph selection

l: co+sg {in, n}	$S^h \to \mu$	ВЕР μ	* V. V	*V ^h	*S ^h
™ O¹: co.ɨ ^h n			*	*	ı
O ² : con ^h	*!			l I	*
O ³ : con ^h _μ		*!		l	**

Stem level: Allomorph selection {mnita, sɨmnita}

*T*₅. Stem-level, allomorph selection

I: co +sg {mnita, s+mnita}	$S^h \to \mu$	ДЕР μ	*V.V	*V ^h	*S ^h
[™] O ¹ : co.s ^h im.ni.ta					
O ² : com ^h .ni.ta	*!				*
O ³ : com ^h _µ ni.ta		*!			**

Could we be any simpler?

Argument for floating features

Our representation:

Argument for floating features

Our representation:

Argument for floating features

However, Korean has no intervocalic /h/-deletion:

```
(27) a. /ihon/ \rightarrow [i.hon] 'divorce' *[i.on]
b. /coh-a-hæ/ \rightarrow [co.a.hæ] 'like.TR' *[co.ha.hæ] *[co.a.æ]
```

- In this approach, morpheme specific phonology is derived by lexically indexed constraints (e.g. Benua 1997a,b)
- Alternative Representation:

Alternative Representation:

Necessary Constraints:

- Necessary Constraints:
 - * *VC^{1,2}: No plain obstruent in this context

- Necessary Constraints:
 - * *VC^{1,2}: No plain obstruent in this context
 - * *VC'1: No glottalised obstruent in this context

- Necessary Constraints:
 - * *VC^{1,2}: No plain obstruent in this context
 - * *VC'1: No glottalised obstruent in this context
 - * *VCh2: No aspirated obstruent in this context

- Necessary Constraints:
 - * *VC^{1,2}: No plain obstruent in this context
 - * *VC',1: No glottalised obstruent in this context

 - * *VC^{h2}: No aspirated obstruent in this context * UNIFORMITY^{1,2}: No gliding/coalescence in this context

- Necessary Constraints:
 - * *VC^{1,2}: No plain obstruent in this context
 - * *VC'1: No glottalised obstruent in this context
 - * *VCh2: No aspirated obstruent in this context
 - ★ UNIFORMITY^{1,2}: No gliding/coalescence in this context
 - * S $\rightarrow \mu^{1,2}$: Gemination of sonorants in this context

- Necessary Constraints:
 - * *VC^{1,2}: No plain obstruent in this context
 - * *VC'1: No glottalised obstruent in this context
 - * *VCh2: No aspirated obstruent in this context
 - ★ UNIFORMITY^{1,2}: No gliding/coalescence in this context
 - \star S \rightarrow μ ^{1,2}: Gemination of sonorants in this context
 - ***** ...
- In addition, allomorph selection should be able to have an access to the indices.

Argument against cophonology

- In this approach, morpheme specific phonology is derived by morpheme specific rankings (e.g. Orgun 1996, 1998, Inkelas 1998)
- Alternative Representation:

Problem for cophonology

- Default Constraints ranking: Max »*VhV
- Constraints ranking for A: *VhV »MAX

(37)	Input		Output	Ranking
	co h -A	\rightarrow	co.A	*VhV »Max
	co.a-ha	\rightarrow	co.a.ha	Max ≫*VhV
	co.a. h a-A	\rightarrow	*co.a.a.æ	*VhV ≫MAX

Problem for cophonology

- Default Constraints ranking: Max »*VhV
- Constraints ranking for A: *VhV »MAX

(37)	Input		Output	Ranking
•	co h -A	\rightarrow	co.A	*VhV »Max
	co.a-ha	\rightarrow	co.a.ha	Max ≫*VhV
	co.a. h a-A	\rightarrow	*co.a.a.æ	*VhV »Max

Still, bleeding of coalescence remains mysterious.

Conclusion

Summary

- We found a new generalisation on how laryngeal contrast of Korean S/V verbal roots affects the paradigm
- We provided the evidence for a floating feature that in combination with strata accounts for the observed opacity
 - * The floating feature docks to the affixes, which changes the laryngeal specification
 - * The laryngealised S/V behaves differently for some processes and allomorph selection.
 - * At the next level, this contrast is neutralised, unlike on the obstruents, rendering the previous processes opaque

Implications

- Our work contributes to the discussion of whether Duke-of-York derivations are parts of human language capacity (Bermúdez Otero 2001, Rubach 2003, Gleim 2018, Rasin 2019)
- Our analysis is also compatible with Yun (2008)'s proposal of stata in Korean and extends the noun-verb asymmetries observed by her

Contact Information

Daniel Gleim, Hyunjung Lee daniel.gleim@uni-leipzig.de hyunjung.lee@uni-leipzig.de University of Leipzig

