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Abstract—Regarding the spoken language understanding
(SLU) pilot task of the Dialog State Tracking Challenge 5
(DSTCS), it is required to classify label sets of speech acts on
human-to-human dialogues. In this paper, we propose a multi-
label classification model with the assistance of algorithm
adaptation method. To be specific, a Convolutional Neural
Network (CNN) model on top of pre-trained word vectors is
adapted for the multi-label classification task by utilizing a
threshold learning mechanism. In order to evaluate the
performance of our proposed model, comparative experiments on
the DSTCS dialogue datasets are conducted. Experimental results
show that the proposed model outperforms most of the submitted
model in the DSTCS in terms of F1-score. Without any manually
designed features, our model has advantage of handling the
multi-label SLU task, using only publicly available pre-trained
word vectors.

Keywords—Multi-label;  Convolutional Neural Network;
Speech Act Classification; Algorithm Adaptation.

I

The spoken language understanding (SLU) is one of the
core components of an end-to-end dialogue system [1]. The
SLU is aimed at extracting semantic meaning of user’s
utterances and building a concept structure which facilitates for
a dialogue manager to decide what to say in the next turn. The
pilot SLU task of the Dialog State Tracking Challenge 5
(DSTCS) is no more than challengeable due to the following
points: human-to-human dialogues, cross-linguistic data and
multi-label classification task [2]. To be more specific, while
human-to-machine dialogues are provided in the previous
challenge series, the dialogue corpus of the DSTCS is
constructed on the basis of human-to-human dialogues to
secure diverse patterns of utterances. Data translated in English
used in the evaluation process are syntactically defective, since
the English data as test data is built by translating the Chinese
dialogue corpus into English one with a Chinese-to-English
machine translation system. Furthermore, a multi-label
classification task significantly increases possible combinations
of speech acts to be annotated to utterances.

INTRODUCTION

As the DSTCS5 builds its corpus by collecting human-to-
human dialogues in a natural setting, it is more likely that
utterances in a single turn contains much more various
pragmatic elements than traditional human-to-machine
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dialogues, which are collected under the control. It means that
more than one speech act can be required to be tagged to a
single utterance in order to articulate the semantic meaning of
user’s utterances elaborately. Consequently, it is more
appropriate to segment a single utterance into a sub-utterance
having a speech act and incorporate them into a full utterance
level, which causes each utterance to contain zero, one or more
speech acts. Therefore, a multi-label classification task for
polymorphous speech acts is to be tackled in the SLU task of
the DSTCS.

However, to the best of our knowledge, there are no
previous works that have explored the performance of
Convolutional Neural Network (CNN) model on a multi-label
speech act classification task, though Deep Neural Network
models have achieved remarkable results in text classification
task [3, 4]. In this paper, we propose a CNN classifier on top of
pre-trained word vectors in conducting a multi-label speech act
classification task. In addition, a threshold learning mechanism
is engaged to enable our proposed model to produce an output
of multiple speech acts. For the purpose of our research, we
examine the performances of CNN models built on top of
different word-embedding algorithms.

The rest of this paper is organized as follows. Section 2
gives a detailed description of the DSTCS corpus and the SLU
pilot task along with brief review of multi-label classification
and some related works. In Section 3, we introduce the
architecture of our proposed model and a threshold predictor.
The section 4 describes how we set up the experiments for
training data and evaluation process. In Section 5, we provide
our experimental results to optimize the performance of our
CNN classifier on the multi-label classification task. The
Section 6 concludes and discusses the future research.

II. BACKGROUND

A. Data Characteristics and Task Description

The DSTCS5 provides the TourSG corpus, which consists of
dialogue sessions collected from Skype calls between tour
guides and tourists focusing on offering touristic information of
Singapore [2, 3]. For the SLU task, the system is given the
utterances from both the tourist and the guide as its input, and
the system subsequently tags the utterances spoken by both the
speakers with appropriate speech acts categories and attributes.
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TABLE L SPEECH ACT CATEGORIES

Metrics Descriptions
QST (Question) Used to identify utterances that pose either a question
or a request
RES (Response) Used 'to identify u?teri.mces that answer to a previous
question or a previous request
INI (Initiative) Used To u‘ie,ntlfy L}tterances that constitute new
initiative in the dialogue
FOL (Follow) A response to a previous utterance that is not either a
question or a request
TABLE IL. EXAMPLE TEST UTTERANCES AND SPEECH ACT
INFORMATION
Speech Act
Speaker Utterances Category
| ~ (Auribute)
um, sentosa the universal studios in the FOL
Guid matter. you see it, the whole family. (ACK)
e ("B, EHYVEANNRSHSE, KF FOL
d, —FAb. ) (INFO)
there are still in the place where 1 can 1QST
Tourist recommend? (REC (3;¥END}
; 5T LA 48 i
(A 377 T DA 4B 4 2) (RE)
yes, we have, um, the zoo. the daytime the FOL
Guide Z00. ) ) (RECOMMEND)
(B, gi1F—1TsiE, A4EHEz FOL
HE. ) (WHERE)
- | how big is the singapore? QST
Tourist | (g ik £ <2 (INFO)

Each sub-utterance belongs to one of the four basic speech act
categories that denote general information of each utterance in
the current dialogue flow. More specific speech act information
can be annotated by the combination with the speech act
attributes. Table 1 gives the list of speech act categories with
their descriptions. Reference [3] gives complete list of the
speech act attributes.

Table 2 shows Chinese test utterances and ones translated
in English that annotated with their corresponding speech act
categories and attributes.

B. Multi-label Classification

When it comes to classification methods, single-label
classifications such as binary and multiclass classification are
mostly treated, in which one instance x; is associated with a
single label [ from a label set L, |[L] > 1[6]. On the contrary,
each instance of data is labeled with a set of labels ¥; € L, the
so-called relevant labels in a multi-label classification. To put it
differently, a system predicts that an |L|-dimensional target
vector y € {0,1}¢, where y; =1 is relevant for a given
instance, whereas y; = 0 indicates that it is irrelevant [7].

The existing methods for multi-label classification are
divided into problem transformation and algorithm adaptation
methods [6]. The most well-known approach of problem
transformation is the binary relevance learning (BR); BR
independently trains one binary classifier for each label / in L,
which ignores the dependent relationship between the labels.
For this reason, BR fails to obtain high predictive performance,
because it does not consider label dependency, as it makes the
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strong assumption of label independency. The other problem
transformation methods, such as pairwise decomposition (PW)
[8], label power set approach (LP) [6] and classifier chains (CC)
[9], have improved on the predictive performance by
considering label dependencies during the transformation.

An alternative to problem transformation is algorithm
adaptation, which deals with data in the whole without
converting a set of labels into one label. [10]. Zhang and Zhou
[11] introduced a back-propagation neural network adapted for
multi-label classification (BP-MLL) by having multiple output
nodes, one for each label. Similarly, Nam and Kim [7]
proposed a simple neural network (NN) approach, which
directly builds upon BP-MLL. Their model named NN was
proved as a state-of-the-art model to classify multi-labeled text
data. The gains were observed in that this model replaced BP-
MLL’s pairwise ranking loss with cross entropy and employed
recent techniques of deep learning such as rectified linear units
(ReLU), Dropout and AdaGrad [7].

C. Related Works on SLU Task of the DSTC

A simple baseline model for the SLU task is provided by
the committee of the DSTC 5. It uses a BR approach and trains
a set of linear support vector machines (SVM) for multi-label
speech act classification. The baseline model utilizes traditional
TF-IDF aPproach based on keywords that appeared in the
utterances . This approach, however, cannot detect semantic
meanings of utterances effectively, since it only superficially
depends on words on the surface level.

In the DSTC 4, Adobe-MIT proposed several classifiers to
recognize the speech acts. The best performing model claimed
by Adobe-MIT is also operated on the basis of a SVM
classifier: the features are the 5000 most common unigrams,
bigrams and trigrams. They transformed the multi-label task
into a multiclass classification task [12]. Since it is assumed
that each utterance belongs to exactly one speech act category
and single speech act attribute, the system has shortcomings
that it cannot produce multiple speech acts for each
corresponding utterance.

III. MODEL ARCHITECTURE

In this section, we propose a multi-label classification
model based on Convolutional Neural Network (CNN). Our
model consists of two modules: a CNN with multiple output
nodes that produces scores for each label, and a multi-label
threshold predictor that generates a reference point using the
scores of the labels. The threshold is then used to for the
system to decide whether each label is as relevant or irrelevant.

A. CNN Architecture

Coming up with the architecture of CNN, proposed by Kim
[4], we propose a CNN classifier consisting of a single
convolutional layer and a single channel, as illustrated in the
Fig. 1. Formally, let w; € R¥ be the k-dimensional word
embedding vector corresponding to i-th word in a given
utterance. An utterance x of length n can then be represented
as an X k matrix:

! https://github.com/seckhwankim/dstc.
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Fig. 1. CNN model architecture with single channel for an example utterance.

1
where @is a concatenation operator. A convolutional operation

involves a filter m € R"*¥ which is applied to a window of h
words. A feature c; is generated by

x=w, bw,D..0w,,

@

where f is a hyperbolic tangent function and b € R is a bias
term. The filter is applied to every possible window of words in
the utterance to produce a feature map:

ci=flm-wyip1 +b)

(€)

A max-over-time pooling is then operated to take the
maximum value ¢ = max{c} as a representative feature for this
filter.

€ =[e1,C 00y Cpopyal

In our model, multiple filters with varying region size h are
integrally engaged into obtain multiple adjacent features.
These features are then concatenated into a fixed-length and
‘top-level” feature vector, which is passed to a fully connected
softmax layer whose output is the probability distribution over
all the labels. At the penultimate layer, we apply a Dropout [13]
as a means of regularization.

B. Multi-label Threshold Predictor

When a trained CNN is used in prediction for a given
utterance x, the output probability distribution p(e|x) from
the softmax layer is used for multi-label prediction. A relevant
label set ¥ for an utterance x is determined by a threshold t as
follows:

Y ={jlp;>t jeL} ().

The threshold learning mechanism used in the literature [7, 14]
is adopted, which models t with a linear regression model. The
learning procedure is described as follows: For each training
example (x,,, Y,,), we set the target values t,, as
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tm = argmin, (|{k|k € Y,,, pi* < e} + |{lll € Yy, p[" 2 £}])
©)

where p;* is the output probability of label k associated with
utterance X,,,. The target threshold values t,, is used in learning
the parameter 6 of the threshold predictor T (x; 8):

E0) =558 (T (X 0) — t,)2 + 516127, (6)

where 1 is the regularization parameter”. At the test time, the
learned threshold value of a test utterance x;, is used to choose
the relevant labels Y, as illustrated in (4).

IV. EXPERIMENTAL SETUP

A. Statistics of DSTCS Datasets

The summary statistics of the SLU datasets for the both
speakers of the DSTCS5 after tokenization are given in Table 3.
For the case of Guide, one interesting point to note is that the
size of label sets in the train set is smaller than that in the test
set, which means that there is no way for the classifier to learn
cases of certain labels assigned to utterances during the training
and predict correct speech acts in the test set of Guide.
Additionally, the average number of assigned labels per
utterance for the both speakers is very close to 1.0, which
indicates that most of the utterances in the datasets are
annotated with only one label.®

2 The “sklearn.linear model. Ridge™ package is utilized to learn linear
regression model with [2-regularization (4 = 1.0).

3 Although it sounds peculiar that the most of the datasets are assigned a
single label, it is very challenging to predict a few numbers of multi-label
speech acts.



TABLE III. STATISTICS OF DSTCS DATASETS
(g:;:i;t:) M b L ¢ "
Train (Tourist) 14226 3327 74/88 1.19 6.94
Test (Tourist) 4085 1543 61/88 1.16 5.87
Train (Guide) 19916 5462 69/88 124 10.66
Test (Guide) 8555 2776 T1/88 1.21 747

M: Number of utterances. D: Size of vocabulary. L: Size of label set
(size/total). C: Average number of labels per utterance. B Average length
of utterance (in words).

B. Hyperparameters and Training

In our experiments, we use: Rectified Linear Units (ReLU)
[15], filter windows (h) of 2, 3, 4 with 200 feature maps,
dropout rate of 0.5 and a batch size of 60. We randomly select
20% of the training data for the validation set. Those values are
chosen by adopting a rough grid search. The model undergoes
training through stochastic gradient descent over shuffled mini-
batches with RMSprop update rule. The model stops the iterant
processes of learning by an early stopping mechanism. The
CNN models are implemented in Keras* framework with
Theano [16] backend.

C. Pre-trained Word Vectors

GloVe [17] and word2vec [18] are the two most popular
word embedding algorithms aiming at mapping semantic
meaning of words in a geometric space. In the experiments, we
initialize our models with two publicly available pre-trained
word vectors; GloVe that are trained on 6 billion words from
Wikipedia 2014 and Gigaword5® and word2vec that are trained
on 100 billion words from Google News®. Both word vectors
have dimensionality of 300.

D. Model Variations

We evaluate three models with different word-vectors
initialized.

® CNN-rand: All word vectors are randomly initialized
and its weights are fine-tuned during training.

® CNN-word2vec: All word vectors are initialized from
the pre-trained word2vec and its weights are kept
static during training.

e CNN-glove: All word vectors are initialized from the

pre-trained GloVe and its weights are kept static
during training.

E. Evaluation Metrics

In the SLU task, a system is required to match relevant
speech acts for a given unlabeled utterance spoken by the target
role speaker. The following evaluation metrics are used in
DSTC5 [1, 3]:

® Precision: Fraction of speech act labels that are

correctly predicted.

4 https:/keras.io/.
3 http://nlp.stanford.edu/projects/glove/.

6 https://code.google.com/archive/p/word2vec/.
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® Recall: Fraction of speech act labels in the gold
standard that are correctly predicted.
® F-measure: The harmonic mean between precision and

recall.

V. RESULTS AND DISCUSSION

We evaluate each model in two settings: CNN-models
without a threshold predictor and CNN-model-threshold. The
CNN models without a threshold predictor produce only one
label of speech act for a given test utterance, since they utilize
maximum output probability only. In contrast, the CNN model
with a threshold predictor handles the multi-label classification
task without any transforming the data with the assistance of
the threshold that predicts the probability distribution over all
labels. All our models are evaluated 50 times, and the mean
scores with standard deviations of each evaluation metric are
calculated. Table 4 and Table 5 summarize the comparative
results of our models for classifying speech acts of guide and
tourist, respectively.

It is observed that even without utilizing threshold learning
mechanism, simple CNN models which do not initialize any
pre-trained word vectors (CNN-rand) significantly outperforms
most of the models submitted in the DSTCS for both speakers
in terms of Fl-score. These results suggest that CNN is
effective in extracting semantic meanings from the utterances
due to the location invariance property of CNN, which makes
the system retrieve semantic values independent of the word
order. In addition, when the models are built on top of pre-
trained word vectors, word2vec and Glove, Fl-score are
additionally improved. It points that word embedding
algorithms are of avail to capture more genuine semantic
meanings, since both two models learn words in terms of the
semantic relationship based on their context (i.e. co-occurrence)
information.

We observe that all the models with the assistance of a
threshold predictor show their effectiveness in multi-label
speech act classification task, in terms of Recall score. The
reason is that the single-label classification models have no
chance to predict correct label sets consisting of multiple
speech acts. The multi-label classification models, however,
have the ability of making precise predictions for the utterance
annotated with more than one label. In terms of Fl-score, the
overall performance of the CNN models is improved with the
assistance of thresholds. It is advisable to apply a threshold
predictor to the corpus where an average number of labels per
utterance is much larger than 1.

Therefore, we propose the CNN-GloVe-threshold model,
which shows the best performance among all the submitted
models in the DSTC5 including Team 2’s, except for the case
of guide. For the case of tourist, CNN-GloVe-threshold slightly
outperforms the Team 2’s model in terms of Fl-score.
Unfortunately, or the case of guide, CNN-GloVe-threshold is
behind that of Team 2’s model. Nevertheless, it is worthy of
noting the fact that our model tackles the multi-label SLU task,

" One of the anonymous reviewers commented that to consolidate the content,
the approach taken by Team 2 should be included in revision of this paper.
Unfortunately, by the time of this writing, Team 2°s model is not published.



TABLE IV. COMPARATIVE RESULTS FOR GUIDE
Models Precision Recall Fl-measure
Baseline (SVM) 0.4588 0.2480 03219
Team 2 05127 04251 0.4648
Team 3 0.4340 03635 0.3956
Team 5 0.4639 03820 0.4190
Team 7 0.5007 02976 0.3733
(Eﬁe:::;) 0.4562+0.001 0.3757+0.001 0.4121+0.001
( +§1§;:;;;g) 0.4070+0.001 0.4287+0.001 0.4175+0.001
Cﬁé‘f’:{ﬁ‘l’fc 0.4768+0.004 0.3927+0.003 0.4307+0.004
CNN-word2
Chihresholdingy  04239%0008 04295000 04266%00ms
CNN-GloV
(smgle_lie; 0.4635+0010 0.3817+0.008 0.4187+0.009
CNN-GloV.
Chihresholding)  04183%0005  04320%000s 04250000
TABLE V. COMPARATIVE RESULTS FOR TOURIST
Models Precision Recall Fl-measure
Baseline (SVM) 0.3694 0.1828 0.2446
Team 2 0.5331 0.5263 0.5297
Team 3 0.4591 0.4241 0.4409
Team 5 0.5026 0.4484 0.4739
Team 7 0.5079 04156 0.4571
CNN-rand
(Sing]e_'i::el) 0.5388+0.005 0.48070.005 0.5081+0.005
( +§E§;{3§ig) 048370014 0.5448%0004 05122006
C&‘Ng:gﬁ'h‘:i"l)“ 0.5462%0.005 0.4873%0.005 0.5151%0.005
CNN-word2
o i di:;;' 0.4806-+0.005 0.5659+0.008 0.5198++0.005
gf:;f&';:’; 0.5537+0.001 0.4940+0.002 0.5221+0.002
(ﬁgggﬂ;:;;) 0.5010+0.002 0.5624+0.002 0.5299+0.002

using only publicly available pre-trained word vectors, without
any manually designed features.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose the CNN classifier on top of pre-
trained word vectors in conducting the multi-label speech act
classification task. In addition, the threshold learning
mechanism is engaged to enable our proposed model to
produce an output of multiple speech acts. Experimental results
show that the proposed model is highly comparable to the best
model submitted in DSTC5. The proposed model is more
economical on account of no need to use sophisticated features
on the multi-label SLU task.

There is still room for improvement in our model. Although
dialogue utterances are dependent in previous dialogue
utterances, our model lacks of such ability to track context of
the previous dialogue. A well designed recurrent neural
network models like long short term memory (LSTM) is
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expected to complement the ftracking ability of our
classification model. Those researches are left for our future
work.
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