
Optimizing Policy via Deep Reinforcement Learning
for Dialogue Management

Abstract—In this paper, we propose a dialogue manager model
based on Deep Reinforcement Learning, which automatically
optimizes a dialogue policy. The policy is trained within deep Q-
learning algorithm, which efficiently approximates value of
actions given a large space of dialogue state. Evaluation processes
are conducted by comparing the performance of the proposed
model to a rule-based one on the dialogue corpora of DSTC2 and
3 under three different levels of error rate in Spoken Language
Understanding. Experimental results prove that given certain
level of SLU error, the dialogue manager with self-learned policy
shows higher completion rate and the robustness to SLU error.
Overcoming the drawbacks of rule-based approach such as limited
flexibility and high maintenance cost, our model shows the
strength of self-learning algorithm in optimizing policy of dialogue
manager without any hand-crafted features.

Keywords—Deep Reinforcement Learning; Dialogue
Management; Dialogue Policy

I. INTRODUCTION
Spoken Dialogue Systems (SDS) has shown innumerable

benefits by interacting with users and provide some useful
information such as weather forecast or personal schedule.
Development of such systems has become more and more
popular and many companies have launched their own dialogue
systems such as Siri, Google Now and Echo that enables to
interacts with users in Speech form. Dialogue manager plays a
central role in building a successful SDS by apprehending a state
of a dialogue in a current turn and deciding a proper action to
take for a next turn, thereby implementing a human-like agent
which interacts with actual users.

One straightforward way to build a dialogue manager is to
define a set of rules that the system is supposed to follow during
a dialogue. Though the rule-based approach is easy and
undemanding, such model suffers from problems such as limited
flexibility and high maintenance cost. To achieve an improved
model, there has been attempt to design dialogue manager within
Reinforcement Learning (RL) framework, since RL-based
model is able to learn and train policy over time with experience.
The RL-based dialogue model, however, still needs an
intervention from a system developer to represent dialogue state,
dialogue actions and a reward function which instructs the
system on the right track of dialogues. In contrast to this

supervised way of learning, a deep Reinforcement Learning
(deep RL) algorithm is proposed to learn how to control policies
from raw video data in complex RL environment such as Atari
games, where the agent equipped with deep RL policy surpasses
a human expert in several games [1].

Drawn on such insights of deep RL, we present a model of
dialogue manager in deep DL applied to goal-oriented task
without carefully designing hand-crafted features. In return for
reducing the development efforts and increasing the system’s
flexibility as much as possible, our model has an ability to decide
an optimal action for a next turn by representing dialogue state
automatically from ontology. For simplification of training
process, we adopt a simulated user in order to interact with the
deep RL policy in semantic level. Experimental results prove
that the policy learned by deep RL achieves a good completion
rate of dialogues as well as robustness to noise in speech.

The rest of this paper is organized as follows. Section 2 gives
a background on reinforcement learning and the core properties
of deep RL. In Section 3, we describe the architecture of our
model, and each component of dialogue manger is involved to
optimize the policy via deep RL: dialogue state, dialogue action,
reward function and a user simulator. Section 4 describes how
we set up the experiments for training the dialogue policy and
evaluate the proposed model. In Section 5, we provide our
experimental results and discusses the implication of applying
deep RL algorithm in designing dialogue manager. The Section
6 concludes this paper.

II. BACKGROUND
In this section, we explore the main idea of RL and deep RL

to understand how each algorithm train a policy, and introduce
some previous works using RL and deep RL method.

A. Reinforcement Learning
An agent in RL learns its behavior by taking actions in an

environment in discrete time steps. At each time t, the agent
receives a representation of state 𝑠", 𝑠" ∈ 𝑆, where 𝑆 is a state
space and selects an action 𝑎" , 𝑎" ∈ 𝐴 , where 𝐴 is a set of
possible actions that the agent can take. As the result of its action,
the agent receives a reward r and transits to a new state 𝑠"'(. The

goal of an agent is to select ‘best’ actions by maximizing its
cumulative discounted reward, defined as

𝑅"=𝑟" + 𝛾𝑟"'(+ 𝛾-𝑟"'- + ⋯+ 𝛾/0(𝑟/ , (1)

where 𝛾 is a discount factor and T is a final time step [2]. Given
that the agent follows a policy 𝜋: 𝑆 → 𝐴 , which defines a
mapping from states to actions, an potential value of actions 𝑎
in the current state 𝑠 is estimated by Q-function as

𝑄∗ 𝑠, 𝑎 = 𝑚𝑎𝑥;𝐸[𝑅"|𝑠" = 𝑠, 𝑎" = 𝑎, 𝜋]. (2)

The more accurate the Q-function is, the better policy the agent
learns.

B. Deep Reinforcement Learning
Though traditional RL algorithms like Q-learning [3] and

SARSA could be used in learning the Q-function, they are quite
inefficient, especially when the state space becomes large or
even infinite. Recent advances in deep RL have achieved
remarkable improvements in various tasks such as computer
vision and speech recognition. Minh et al. proposed a model
based on reinforcement learning method called Deep
Reinforcement Learning (DRL, also called as deep Q-learning)
to control policies directly from raw pixel inputs in Atari game.
They proved that deep RL algorithm outperforms all previous
methods on six of the games and surpasses even a human expert
on three of them [1].

The core idea of deep RL is to adopt a function
approximator based on deep neural network which is called Q-
network to estimate the action-value function 𝑄(𝑠, 𝑎; 𝜃) ≈
𝑄∗(𝑠, 𝑎), where 𝜃 is the parameters of the Q-network. The Q-
network could be constructed in any form, such as a multi-layer
feed forward network, a convolutional neural network or even
a recurrent neural network.
In deep RL algorithm, the learning agent maintains two Q-
networks: a value network and a policy network. The value
network estimates value of target action, based on which policy
network determines which action the agent should take for the
next turn. The policy network is trained toward minimizing loss
function 𝐿F(𝜃F) that changes at each iteration 𝑖,

𝐿F 𝜃F = 𝐸[(𝑦F − 𝑄 𝑠, 𝑎; 𝜃F)-], (3)

1 We would like to make a clear-cut between value and the value network. The
italicized value denotes the specific value of slots. For example, ‘French’,

where 𝑦F is the value of target action for iteration 𝑖 which is
estimated by the value network at iteration 𝑖 − 1,

𝑦F = 𝐸[𝑟 + 𝛾𝑚𝑎𝑥KL𝑄(𝑠M, 𝑎M; 𝜃F0()|𝑠, 𝑎]. (4)

To ensure adequate exploration of state space, the ϵ -greedy
strategy is applied. The agent greedily chooses an action based
on the value of agent’s action calculated by the policy network,

𝑎 = 𝑚𝑎𝑥K𝑄(𝑠, 𝑎; 𝜃), (5)

with probability 1 − ϵ and selects a random action with
probability ϵ.

III. DEEP RL FOR DIALOGUE MODELING
In this section, we present our deep RL approach to build a

dialogue manager toward policy optimization. The overall
architecture of our model is presented in Figure 1.

A. Dialogue Action
In our deep-RL based dialogue system, agent’s responses and
user’s utterances are converted into semantic form called
Dialogue Action with the form of ‘𝐴𝑐𝑡	(𝑠𝑙𝑜𝑡, 𝑣𝑎𝑙𝑢𝑒)’. Rather
than directly using raw utterances, we can have better control
over the system’s behaviors. The act is constructed from the
given the previous defined set of system’s action, the slot is
acquired from in-domain ontology. Due to the sparsity issues,
value1 is temporarily left vacant in the level of constructing the
value and policy network. The exact instance of value is later
added to the corresponding slot as a post-processing step, once
the deep-RL policy determines the best action. The full set of
action-slot paradigm is presented in the Appendix III.

B. Dialogue State
Dialogue state of each dialogue turn represents the

information that the user want the system to do. To make
appropriate response to the user, the system should keep track
of the changes in dialogue state during the entire dialogue, and
it is also responsible for representing the dialogue state over

‘American’ and ‘Mexican’ are possible values for the corresponding slot
‘Food’.

Fig. 1. The architecture of our Dialouge Manager

turns by using the SLU results. 2 The dialogue state tracker
outputs for each turn distributions for each of the three
components of the dialogue state: Goals, Method and Requested
slots. We represent the dialogue state in the form of continuous
vector. Table 1 shows the examples of dialogue state in terms
of Goal. To let the dialogue agent aware of backend system
such as a database, we also add the results of a database query
to the state vector. It is possible to automatically construct the
dialogue state vector beforehand by using the domain-specific
ontology information, which can reduce a lot of human effort
in designing the possible dialogue state.

C. User Simulator
As stated above, the deep RL agent learns over times by

experiences. In other word, the dialogue manager needs a lot of
dialogues to train and feedbacks to its corresponding actions to
optimize a good policy. Normally, the number of dialogues
required to train a real-world dialogue manager is
approximately the order of 100k, which is impractical to collect
such many dialogues from real users [4]. Therefore, we develop
an agenda-based user simulator which is similar to the one
proposed by Schatzmann, to automatically train the policy [5].

Let us briefly describe the process of how user simulator
operates. The simulator is initialized with a certain agenda
which consists of constraints (i.e. food=korean, price=cheap,
area=east etc.) and requests (i.e. address, phone, signature etc.)
by using ontology information in a given domain. During the
dialogue, the simulator interacts with the dialog agent based on
its agenda and provides a reward to agent’s actions to evaluate
the success rate of dialogues. The interaction process is
illustrated in Figure 1.

D. Reward Function
During scoring the success rate of a dialogue, we say that a

dialogue is successful if the dialogue agent successfully
searches a restaurant and answered all the user’s requests within
10 dialogue turns. Based on this setting, a reward function is set
to give a reward of 20 for successful dialogues, and a penalty -
10 for failed dialogues. To encourage the agent to produce
actions effectively, an additional -1 is charged for each dialogue
turn so that the agent behaves as fast as possible.

2 In this work, we use a public available, rule-based state tracker that is
described in DSTC2.

E. Q-network and Training
The architecture of the Q-network consists of a fully-

connected multi-layer perceptron with 254 nodes in the input
layer, 100 nodes in the first and second hidden layer, and 51
nodes in the output layer. 3 The Q-network outputs a probability
distributions over all agent’s actions given the current dialogue
state vector and optimize the dialogue policy automatically.

During the training of the Q-network, we adopt a ϵ-greedy
strategy, where the probability ϵ is initially set to 1.0 and
gradually decreased to 0.1 over the first 10k dialogues. Then we
set the ϵ to 0 and train the policy for another 10k dialogues.

IV. EXPERIMENTAL SETUP
We evaluate the proposed RL dialogue policy on the DSTC2

and 3 dialogue corpora by comparing to a rule-based dialogue
policy. Experiments are conducted on three levels of SLU error
rates: None, Low and High.

A. DSTC2 & 3 Dialogue Corpora
The DSTC2 and 3 dialogue corpora were collected using

Amazon Mechanical Turk and released in 2013 and 2014
respectively, initially intended for evaluating the performance of
Dialogue State Trackers [6, 7]. The domain of DSTC2 provides
restaurant information and the DSTC3 embraces tourist
information to extend the domain of restaurant information,
including bars, cafes and several new slots. The lists of slots and
the number of their possible values of DSTC2 & 3 corpora are
presented in Appendix I and II. Both the DSTC2 & 3 corpora
and their ontology file are publicly available.4

B. SLU error rates: None, Low and High
One of the advantages of deep RL-based dialogue policy

over the rule-based policy is the robustness to SLU errors. To
test the SLU error robustness, we mimic three environments
with different levels of noise by using the SLU N-best results
stated in the corpora. Table 2 and Table 3 summarize the SLU
error rate of DSTC2 and DSTC3 dialogue corpora, respectively.

C. Rule-based Dialogue Policy
To compare the performance of deep RL-policy, we build a

rule-based dialogue policy as a baseline model. The model

3 See Table 1. The number of nodes in the input layer is calculated by the total
sum of the number of vectors dimension in Dialogue State. The 51 nodes of
output layers are described in Appendix III.
4 http://camdial.org/~mh521/dstc/

TABLE I. THE EXAMPLE OF INPUT LAYER OF Q-NETWORK

 Output of Dialogue State Tracker SLU N-best results of user’s utterance Results of DB query

Components Goals Methods Requested SLU 1-best SLU 2-best SLU 3-best Matched count
No. of dimension 5 5 9 78 78 78 1

 food pricerange name area this
 0.9458 0.6613 0.0 0.0613 0.0

issues a query and makes a response to user’s utterance using a
set of predefined rules. The pseudo code of the rule-based
dialogue policy is presented in Algorithm 1.

V. RESULTS AND DISCUSSION
Table 4 and Table 5 summarize the comparative results of

the dialogue manager with the deep RL policy and the rule-
based policy. As shown in Table 4 and 5, the rule-based policy
always achieves a 100% dialogue success rate if there exists no
SLU error. When the SLU error is relatively low, the deep RL
policy outperforms the rule-based policy 4~5% in terms of
dialogue success rate. Also, the Deep RL policy has another
advantage in terms of the average dialogue turns which are
required for completing a dialogue, which is shorter than the
baseline model with rule-based policy. The result suggests that
the deep RL policy interacts with the simulated user more
effectively than the rule-based policy.

We observe that the differences of two policies in terms of
dialogue success rate and average dialogue turns are more
noticeable in the extended dialogue domain, DSTC3. Appendix
IV and Appendix V presents an example of dialogue between
the simulated user and the dialogue manager with rule-based
and deep RL based policy.

Figure 2 presents the changes of dialogue success rate with
respect to the number of dialogues used in training. The success
rate is converged after 10k dialogues under the None SLU error

level, under the Low and High case, the policy needs another 5k
dialogues to converge. Nevertheless, the number of dialogues
required to converge is much smaller than the traditional MDP-
RL policy which needs approximately 90k~700k dialogues [8].
It shows our dialogue manager with deep Q-learning
economically trains a policy with small size of dialogues.

The experimental results suggest that by optimizing the
policy in deep RL algorithm, dialogue agent can be trained
automatically to successfully complete a dialogue within much
shorter turns and to be more robust to SLU error than the rule-
based policy. In addition, our proposed model requires even
smaller size of train data to learn the best action.

VI. CONCLUSION
In this paper, we propose the dialogue manager by

optimizing the dialogue policy using deep Reinforcement
Learning algorithm. It shows the deep RL policy is more robust
to SLU error and flexible to complex domain of dialogues than
the rule-based policy.

TABLE V. COMPARATIVE RESULTS IN DSTC3DOMAIN.

SLU Error
Level Policy Dialogue

Success Rate
Average

Dialog Turns

None
Rule-based 100% 8.58
Deep RL 99.16% 5.84

Low
Rule-based 91.49% 8.16
Deep RL 95.15% 6.86

High
Rule-based 52.49% 11.53
Deep RL 86.85% 8.05

TABLE IV. COMPARATIVE RESULTS IN DSTC2 DOMAIN.

SLU Error
Level Policy Dialogue

Success Rate
Average

Dialog Turns

None
Rule-based 100% 7.42
Deep RL 99.38% 5.84

Low
Rule-based 85.57% 7.47
Deep RL 90.35% 7.74

High
Rule-based 77.14% 7.37
Deep RL 89.55% 8.16

Algorithm 1 – Rule-based dialogue policy.
1: G ← the ‘goal’ component of the state tracker output.
2: R ← the ‘requested slot’ component of the state tracker output.
3: S ← the DB query result with constrains in G.
4: 𝐴W: placeholder for output system dialogue acts.
5: if length(S) = 0 then
6: 𝐴W=canthelp(slot=value), fill slot=value using G.
7: if length(G) < 2 then
8: 𝐴W=request(slot), fill slot using slots that not yet included in G.
9: else:
10: venue=random(S)
11: 𝐴W=offer(name=venue.name)
12: for slot in R do
13: 𝐴W=𝐴W+inform(venue.slot)
14: output system response 𝐴W.

Fig. 2. The Success Rate of Dialogues in Different SLU Errors.

TABLE III. SLU ERROR RATE OF DSTC3 CORPORA

SLU Error Level Top-1 Error Rate Top-10 Error Rate
None 0% 0%
Low 16.17% 6.78%
High 31.22% 19.43%

TABLE II. SLU ERROR RATE OF DSTC2CORPORA

SLU Error Level Top-1 Error Rate Top-10 Error Rate
None 0% 0%
Low 29.02% 16.69%
High 36.98% 23.71%

* The “Top-1 Error Rate” means the probability that the ground truth
dialogue acts are not presented in Top-1 SLU result. Similarly, the “Top-10
Error Rate” means the probability that the ground truth dialogue acts are not
presented in Top-10 SLU result.

REFERENCES
[1] V. Mnih, et al, "Playing atari with deep reinforcement learning,"

arXiv:1312.5602, (2013).
[2] R. Sutton and A. Barto. Reinforcement learning I: An introduction, ser.

Adaptive Computation and Machine Learning. Cambridge,
Massachusetts: MIT press, (1998).

[3] P. Dayan and C. Watkins. "Q-learning," Machine learning, (1992), pp.
279-292.

[4] M. Gašic, Statistical dialogue modeling. Diss. PhD thesis, University of
Cambridge, (2011).

[5] S. Jost, et al, "Agenda-based user simulation for bootstrapping a POMDP
dialogue system," Human Language Technologies 2007. Association for
Computational Linguistics, (2007), pp. 149-152.

[6] H. Matthew, B. Thomson and J. D. Williams, "Dialog state tracking
challenge 2 & 3 handbook," (2013).

[7] H. Matthew, B. Thomson and J. D. Williams, "The third dialog state
tracking challenge." in Proceedings of IEEE Spoken Language
Technology Workshop (SLT), 2014.

[8] E. Levin, R. Pieraccini and W. Eckert. "Using markov decision process
for learning dialogue strategies," in Proceedings of the IEEE
International Conference. vol. 1, pp. 201-204, 1998.

APPENDICES

APPENDIX I. SLOTS IN DSTC2 (RESTAURANT INFORMATION DOMAIN)

Slot User may give as a constraint?
area Yes, 5 possible values.
food Yes, 91 possible values.
name Yes, 113 possible values.

pricerange Yes, 3 possible values.
addr No

phone No
postcode No
signature No

APPENDIX II. SLOTS IN DSTC3 (TOURIST INFORMATION DOMAIN)

Slot User may give as a constraint?
area Yes, 15 possible values.

children allowed Yes, 2 possible values.
food Yes, 28 possible values.

has internet Yes, 2 possible values.
has tv Yes, 2 possible values.
name Yes, 163 possible values.
near Yes, 52 possible values.

pricerange Yes, 4 possible values.
type Yes, 3 possible values.
addr No

phone No
postcode No

price No

APPENDIX III. SYSTEM ACTIONS AND CORRESPONDING EXAMPLE UTTERANCES.

Dialogue Act 1 Dialogue Act 2 Dialogue Act 3 Intended Meaning of System’s Action
select(pricerange=$x) select(pricerange=$y) Do you want an expensive or cheap restaurant?
select(food=$x) select(food=$y) Do you want an Indian or French restaurant?
select(area=$x) select(area=$y) Do you want a restaurant in south or north?
request(pricerange) Which price range do you want?
request(food) Which food do you want?
request(area) Which area do you want?
request(pricerange) impl-conf(food=$x) There are restaurants that serve French food, which price range

do you want?
request(pricerange) impl-conf(area=$x) You want restaurants in north, which price range do you want?
request(food) impl-conf(pricerange=$x) You want expensive food, which food do you want?
request(food) impl-conf(area=$x) There are restaurants in East, which food do you want?
request(area) impl-conf(pricerange=$x) There are restaurants in East, which price range do you want?
request(area) impl-conf(food=$x) You want Korean food, which price range do you want?
request(pricerange) impl-conf(food=$x) impl-conf(area=$y) There are restaurants that serve Chinese food in East, which

price range do you want?
request(food) impl-conf(pricerange=$x) impl-conf(area=$y) There are restaurants that serve moderate price range in south,

which food do you want?
request(area) impl-conf(pricerange=$x) impl-conf(food=$y) There are restaurants that serve expensive Italian food, which

area do you want?
offer(name=$x) “Tree house” is a good restaurant.
offer(name=$x) inform(pricerange=$y) “Tree house” is a moderate priced restaurant.
offer(name=$x) inform(food=$y) “Tree house” is a good place and they serve Italian food.
offer(name=$x) inform(area=$y) “Tree house” is in west area.
offer(name=$x) inform(phone=$y) The phone number of “Tree house” is 010-0000-5059.
offer(name=$x) inform(postcode=$y) The postcode of “Tree house” is 157-840.
offer(name=$x) inform(addr=$y) “Tree house” is located at Westin Bayshore.
offer(name=$x) inform(signature=$y) The signature dish of “Tree house” is Vongole pasta.
offer(name=$x) inform(pricerange=$y) inform(food=$z) “Tree house” serves expensive Italian food.
offer(name=$x) inform(pricerange=$y) inform(area=$z)
offer(name=$x) inform(pricerange=$y) inform(phone=$z)
offer(name=$x) inform(pricerange=$y) inform(postcode=$z)
offer(name=$x) inform(pricerange=$y) inform(addr=$z)
offer(name=$x) inform(pricerange=$y) inform(signature=$z)
offer(name=$x) inform(food=$y) inform(area=$z)
offer(name=$x) inform(food=$y) inform(phone=$z)
offer(name=$x) inform(food=$y) inform(postcode=$z)
offer(name=$x) inform(food=$y) inform(addr=$z)
offer(name=$x) inform(food=$y) inform(signature=$z)
offer(name=$x) inform(area=$y) inform(phone=$z)
offer(name=$x) inform(area=$y) inform(postcode=$z)
offer(name=$x) inform(area=$y) inform(addr=$z)
offer(name=$x) inform(area=$y) inform(signature=$z)
offer(name=$x) inform(postcode=$y) inform(phone=$z)
offer(name=$x) inform(postcode=$y) inform(addr=$z)
offer(name=$x) inform(phone=$y) inform(signature=$z)
offer(name=$x) inform(phone=$y) inform(addr=$z)
offer(name=$x) inform(signature=$y) inform(addr=$z)
expl-conf(pricerange=$x) You want to find an expensive restaurant, right?
expl-conf(food=$x) You want to find a Mexica restaurant, right?
expl-conf(area=$x) You want to find a restaurant in south, right?
canthelp(pricerange=$x) There is no restaurant serving low priced food.
canthelp(food=$x) There is no restaurant serving Korean food.
canthelp(area=$x) There is no restaurant in West
repeat() I am not sure what you just said, can you repeat that?

APPENDIX IV. EXAMPLE DIALOGUES OF RULE-BASED POLICY WITH HIGH SLU ERROR RATE (IN DSTC2 DOMAIN).

Turn No. Speaker Dialogue acts (Semantic form) Intended Meaning (Surface form)
0 System welcomemsg() How can I help you ?
1 User inform(area=centre) Any restaurant in the centre area?
1 System request(pricerange) What pricerange do you want?
2 User inform(pricerange=moderate) Moderate.
2 System request(pricerange) What pricerange do you want?
3 User inform(pricerange=moderate) I want moderate priced restaurant.

3 System
offer(name=sesame restaurant)
inform(pricerange=moderate)
inform(area=centre)

“Sesame restaurant” is located at centre, with a moderate pricerange.

4 User request(food) What kind of food do they serve?

4 System offer(name=sesame restaurant)
inform(food=spanish)

“Sesame restaurant” serves Spanish food.

5 User inform(food=romanian) Romanian.

5 System offer(name=sesame restaurant)
inform(food=spanish)

“Sesame restaurant” serves Spanish food.

6 User inform(food=romanian) How about Romanian restaurant?

6 System
offer(name=eraina)
inform(pricerange=moderate)
inform(food=romanian)

“Eraina” serves moderate priced Romanian food.

7 User request(postcode) What is the postcode?

7 System offer(name=eraina)
inform(postcode=336-404)

The postcode of “Eraina” is 336-404.

8 User request(signature) What is the signature dish?

8 System offer(name=eraina)
inform(signature=flat_bone)

signature dish of “Eraina” is “Flat Bone”.

9 User request(addr) What is the address?

9 System offer(name=eraina)
inform(addr=3791 Charles Trace Suite)

The address is 3791 Charles Trace Suite.

10 User thankyou() Thanks!
10 System bye() Bye!

APPENDIX V. EXAMPLE DIALOGUES OF DEEP RL POLICY WITH HIGH SLU ERROR RATE (IN DSTC2 DOMAIN).

Turn No. Speaker Dialogue act (Semantic form) Utterance (Surface form)
0 System welcomemsg() How can I help you ?

1 User inform(pricerange=cheap)
inform(food=indian) I want cheap Indian food.

1 System offer(name=panahar)
inform(area=west) “Panahar” is a good place in west area.

2 User inform(area=south) South area.

2 System offer(name=the river bar steakhouse)
inform(area=east) “the river bar steakhouse” is in east area.

3 User inform(area=south) I want south area.
3 System canthelp(pricerange=cheap) I’m sorry, but there is no place in cheap pricerange.
4 User inform(pricerange=moderate) How about moderate pricerange?
4 System canthelp(food=indian) I’m sorry, but there is no Indian restaurant in this area.
5 User inform(food=thai) Find me Thai restaurant.
5 System canthelp(food=indian) I’m sorry, but there is no Indian restaurant area.
6 User inform(food=thai) Thai restaurant.

6 System
offer(name=venue)
inform(food=thai)
inform(area=south)

“Venue” is a Thai restaurant in south area.

7 User request(postcode) Postcode?

7 System
offer(name=venue)
inform(postcode=370-356)
inform(signature=picnic_shoulder)

The postcode is 370-356 and their signature dish is “Pinic Shoulder”.

9 User request(addr) What is the address?

9 System offer(name=venue)
inform(addr=9558 Ramirez Villages Apt.) The address is 9558 Ramirez Villages Apt.

10 User thankyou() Thankyou!
10 System bye() Bye!

