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Abstract—In this paper, we propose a dialogue manager model 
based on Deep Reinforcement Learning, which automatically 
optimizes a dialogue policy. The policy is trained within deep Q-
learning algorithm, which efficiently approximates value of 
actions given a large space of dialogue state. Evaluation processes 
are conducted by comparing the performance of the proposed 
model to a rule-based one on the dialogue corpora of DSTC2 and 
3 under three different levels of error rate in Spoken Language 
Understanding. Experimental results prove that given certain 
level of SLU error, the dialogue manager with self-learned policy 
shows higher completion rate and the robustness to SLU error. 
Overcoming the drawbacks of rule-based approach such as limited 
flexibility and high maintenance cost, our model shows the 
strength of self-learning algorithm in optimizing policy of dialogue 
manager without any hand-crafted features. 

Keywords—Deep Reinforcement Learning; Dialogue 
Management; Dialogue Policy 

I.  INTRODUCTION 
Spoken Dialogue Systems (SDS) has shown innumerable 

benefits by interacting with users and provide some useful 
information such as weather forecast or personal schedule. 
Development of such systems has become more and more 
popular and many companies have launched their own dialogue 
systems such as Siri, Google Now and Echo that enables to 
interacts with users in Speech form. Dialogue manager plays a 
central role in building a successful SDS by apprehending a state 
of a dialogue in a current turn and deciding a proper action to 
take for a next turn, thereby implementing a human-like agent 
which interacts with actual users.  

One straightforward way to build a dialogue manager is to 
define a set of rules that the system is supposed to follow during 
a dialogue. Though the rule-based approach is easy and 
undemanding, such model suffers from problems such as limited 
flexibility and high maintenance cost. To achieve an improved 
model, there has been attempt to design dialogue manager within 
Reinforcement Learning (RL) framework, since RL-based 
model is able to learn and train policy over time with experience. 
The RL-based dialogue model, however, still needs an 
intervention from a system developer to represent dialogue state, 
dialogue actions and a reward function which instructs the 
system on the right track of dialogues. In contrast to this 

supervised way of learning, a deep Reinforcement Learning 
(deep RL) algorithm is proposed to learn how to control policies 
from raw video data in complex RL environment such as Atari 
games, where the agent equipped with deep RL policy surpasses 
a human expert in several games [1]. 

Drawn on such insights of deep RL, we present a model of 
dialogue manager in deep DL applied to goal-oriented task 
without carefully designing hand-crafted features. In return for 
reducing the development efforts and increasing the system’s 
flexibility as much as possible, our model has an ability to decide 
an optimal action for a next turn by representing dialogue state 
automatically from ontology. For simplification of training 
process, we adopt a simulated user in order to interact with the 
deep RL policy in semantic level. Experimental results prove 
that the policy learned by deep RL achieves a good completion 
rate of dialogues as well as robustness to noise in speech. 

The rest of this paper is organized as follows. Section 2 gives 
a background on reinforcement learning and the core properties 
of deep RL. In Section 3, we describe the architecture of our 
model, and each component of dialogue manger is involved to 
optimize the policy via deep RL: dialogue state, dialogue action, 
reward function and a user simulator. Section 4 describes how 
we set up the experiments for training the dialogue policy and 
evaluate the proposed model. In Section 5, we provide our 
experimental results and discusses the implication of applying 
deep RL algorithm in designing dialogue manager. The Section 
6 concludes this paper.  

II. BACKGROUND 
In this section, we explore the main idea of RL and deep RL 

to understand how each algorithm train a policy, and introduce 
some previous works using RL and deep RL method.   

A. Reinforcement Learning 
An agent in RL learns its behavior by taking actions in an 

environment in discrete time steps. At each time t, the agent 
receives a representation of state 𝑠", 𝑠" ∈ 𝑆, where 𝑆 is a state 
space and selects an action 𝑎" , 𝑎" ∈ 𝐴 , where 𝐴  is a set of 
possible actions that the agent can take. As the result of its action, 
the agent receives a reward r and transits to a new state 𝑠"'(. The 



goal of an agent is to select ‘best’ actions by maximizing its 
cumulative discounted reward, defined as  

𝑅"=𝑟" + 𝛾𝑟"'( + 𝛾-𝑟"'- + ⋯+ 𝛾/0(𝑟/ ,  (1) 

where 𝛾 is a discount factor and T is a final time step [2]. Given 
that the agent follows a policy 𝜋: 𝑆 → 𝐴 , which defines a 
mapping from states to actions, an potential value of actions 𝑎 
in the current state 𝑠 is estimated by Q-function as 

𝑄∗ 𝑠, 𝑎 = 𝑚𝑎𝑥;𝐸[𝑅"|𝑠" = 𝑠, 𝑎" = 𝑎, 𝜋].          (2) 

The more accurate the Q-function is, the better policy the agent 
learns.  

B. Deep Reinforcement Learning 
Though traditional RL algorithms like Q-learning [3] and 

SARSA could be used in learning the Q-function, they are quite 
inefficient, especially when the state space becomes large or 
even infinite. Recent advances in deep RL have achieved 
remarkable improvements in various tasks such as computer 
vision and speech recognition. Minh et al. proposed a model 
based on reinforcement learning method called Deep 
Reinforcement Learning (DRL, also called as deep Q-learning) 
to control policies directly from raw pixel inputs in Atari game. 
They proved that deep RL algorithm outperforms all previous 
methods on six of the games and surpasses even a human expert 
on three of them [1]. 

The core idea of deep RL is to adopt a function 
approximator based on deep neural network which is called Q-
network to estimate the action-value function 𝑄(𝑠, 𝑎; 𝜃) ≈
𝑄∗(𝑠, 𝑎), where 𝜃 is the parameters of the Q-network. The Q-
network could be constructed in any form, such as a multi-layer 
feed forward network, a convolutional neural network or even 
a recurrent neural network.  
In deep RL algorithm, the learning agent maintains two Q-
networks: a value network and a policy network. The value 
network estimates value of target action, based on which policy 
network determines which action the agent should take for the 
next turn. The policy network is trained toward minimizing loss 
function 𝐿F(𝜃F) that changes at each iteration 𝑖,  

𝐿F 𝜃F = 𝐸[(𝑦F − 𝑄 𝑠, 𝑎; 𝜃F )-],  (3) 

                                                             
1 We would like to make a clear-cut between value and the value network. The 
italicized value denotes the specific value of slots. For example, ‘French’, 

where 𝑦F  is the value of target action for iteration 𝑖  which is 
estimated by the value network at iteration 𝑖 − 1, 

𝑦F = 𝐸[𝑟 + 𝛾𝑚𝑎𝑥KL𝑄(𝑠M, 𝑎M; 𝜃F0()|𝑠, 𝑎].   (4) 

To ensure adequate exploration of state space, the ϵ -greedy 
strategy is applied. The agent greedily chooses an action based 
on the value of agent’s action calculated by the policy network, 

𝑎 = 𝑚𝑎𝑥K𝑄(𝑠, 𝑎; 𝜃),         (5) 

with probability 1 − ϵ  and selects a random action with 
probability ϵ. 

III. DEEP RL FOR DIALOGUE MODELING 
In this section, we present our deep RL approach to build a 

dialogue manager toward policy optimization. The overall 
architecture of our model is presented in Figure 1. 

A. Dialogue Action 
In our deep-RL based dialogue system, agent’s responses and 
user’s utterances are converted into semantic form called 
Dialogue Action with the form of ‘𝐴𝑐𝑡	(𝑠𝑙𝑜𝑡, 𝑣𝑎𝑙𝑢𝑒)’. Rather 
than directly using raw utterances, we can have better control 
over the system’s behaviors. The act is constructed from the 
given the previous defined set of system’s action, the slot is 
acquired from in-domain ontology. Due to the sparsity issues, 
value1 is temporarily left vacant in the level of constructing the 
value and policy network.  The exact instance of value is later 
added to the corresponding slot as a post-processing step, once 
the deep-RL policy determines the best action. The full set of 
action-slot paradigm is presented in the Appendix III. 

B. Dialogue State 
Dialogue state of each dialogue turn represents the 

information that the user want the system to do. To make 
appropriate response to the user, the system should keep track 
of the changes in dialogue state during the entire dialogue, and 
it is also responsible for representing the dialogue state over 

‘American’ and ‘Mexican’ are possible values for the corresponding slot 
‘Food’. 

 
Fig. 1. The architecture of our Dialouge Manager 



turns by using the SLU results. 2  The dialogue state tracker 
outputs for each turn distributions for each of the three 
components of the dialogue state: Goals, Method and Requested 
slots. We represent the dialogue state in the form of continuous 
vector. Table 1 shows the examples of dialogue state in terms 
of Goal. To let the dialogue agent aware of backend system 
such as a database, we also add the results of a database query 
to the state vector. It is possible to automatically construct the 
dialogue state vector beforehand by using the domain-specific 
ontology information, which can reduce a lot of human effort 
in designing the possible dialogue state.  

C. User Simulator 
As stated above, the deep RL agent learns over times by 

experiences. In other word, the dialogue manager needs a lot of 
dialogues to train and feedbacks to its corresponding actions to 
optimize a good policy. Normally, the number of dialogues 
required to train a real-world dialogue manager is 
approximately the order of 100k, which is impractical to collect 
such many dialogues from real users [4]. Therefore, we develop 
an agenda-based user simulator which is similar to the one 
proposed by Schatzmann, to automatically train the policy [5].  

Let us briefly describe the process of how user simulator 
operates. The simulator is initialized with a certain agenda 
which consists of constraints (i.e. food=korean, price=cheap, 
area=east etc.) and requests (i.e. address, phone, signature etc.) 
by using ontology information in a given domain. During the 
dialogue, the simulator interacts with the dialog agent based on 
its agenda and provides a reward to agent’s actions to evaluate 
the success rate of dialogues. The interaction process is 
illustrated in Figure 1.  

D. Reward Function 
During scoring the success rate of a dialogue, we say that a 

dialogue is successful if the dialogue agent successfully 
searches a restaurant and answered all the user’s requests within 
10 dialogue turns. Based on this setting, a reward function is set 
to give a reward of 20 for successful dialogues, and a penalty -
10 for failed dialogues. To encourage the agent to produce 
actions effectively, an additional -1 is charged for each dialogue 
turn so that the agent behaves as fast as possible.  

                                                             
2 In this work, we use a public available, rule-based state tracker that is 
described in DSTC2. 

E. Q-network and Training 
The architecture of the Q-network consists of a fully-

connected multi-layer perceptron with 254 nodes in the input 
layer, 100 nodes in the first and second hidden layer, and 51 
nodes in the output layer. 3 The Q-network outputs a probability 
distributions over all agent’s actions given the current dialogue 
state vector and optimize the dialogue policy automatically. 

During the training of the Q-network, we adopt a ϵ-greedy 
strategy, where the probability ϵ  is initially set to 1.0 and 
gradually decreased to 0.1 over the first 10k dialogues. Then we 
set the ϵ to 0 and train the policy for another 10k dialogues. 

IV. EXPERIMENTAL SETUP 
We evaluate the proposed RL dialogue policy on the DSTC2 

and 3 dialogue corpora by comparing to a rule-based dialogue 
policy. Experiments are conducted on three levels of SLU error 
rates: None, Low and High.  

A. DSTC2 & 3 Dialogue Corpora 
The DSTC2 and 3 dialogue corpora were collected using 

Amazon Mechanical Turk and released in 2013 and 2014 
respectively, initially intended for evaluating the performance of 
Dialogue State Trackers [6, 7]. The domain of DSTC2 provides 
restaurant information and the DSTC3 embraces tourist 
information to extend the domain of restaurant information, 
including bars, cafes and several new slots. The lists of slots and 
the number of their possible values of DSTC2 & 3 corpora are 
presented in Appendix I and II. Both the DSTC2 & 3 corpora 
and their ontology file are publicly available.4 

B. SLU error rates: None, Low and High 
One of the advantages of deep RL-based dialogue policy 

over the rule-based policy is the robustness to SLU errors. To 
test the SLU error robustness, we mimic three environments 
with different levels of noise by using the SLU N-best results 
stated in the corpora. Table 2 and Table 3 summarize the SLU 
error rate of DSTC2 and DSTC3 dialogue corpora, respectively. 

C. Rule-based Dialogue Policy 
To compare the performance of deep RL-policy, we build a 

rule-based dialogue policy as a baseline model. The model 

3 See Table 1. The number of nodes in the input layer is calculated by the total 
sum of the number of vectors dimension in Dialogue State. The 51 nodes of 
output layers are described in Appendix III. 
4 http://camdial.org/~mh521/dstc/  

TABLE I. THE EXAMPLE OF INPUT LAYER OF Q-NETWORK 

 Output of Dialogue State Tracker SLU N-best results of user’s utterance Results of DB query 

Components Goals Methods Requested SLU 1-best SLU 2-best SLU 3-best Matched count 
No. of dimension 5 5 9 78 78 78 1 

     

  food pricerange name area this  
  0.9458 0.6613 0.0 0.0613 0.0  

 



issues a query and makes a response to user’s utterance using a 
set of predefined rules. The pseudo code of the rule-based 
dialogue policy is presented in Algorithm 1.  

V. RESULTS AND DISCUSSION  
Table 4 and Table 5 summarize the comparative results of 

the dialogue manager with the deep RL policy and the rule-
based policy. As shown in Table 4 and 5, the rule-based policy 
always achieves a 100% dialogue success rate if there exists no 
SLU error. When the SLU error is relatively low, the deep RL 
policy outperforms the rule-based policy 4~5% in terms of 
dialogue success rate. Also, the Deep RL policy has another 
advantage in terms of the average dialogue turns which are 
required for completing a dialogue, which is shorter than the 
baseline model with rule-based policy. The result suggests that 
the deep RL policy interacts with the simulated user more 
effectively than the rule-based policy.  

We observe that the differences of two policies in terms of 
dialogue success rate and average dialogue turns are more 
noticeable in the extended dialogue domain, DSTC3. Appendix 
IV and Appendix V presents an example of dialogue between 
the simulated user and the dialogue manager with rule-based 
and deep RL based policy.  

Figure 2 presents the changes of dialogue success rate with 
respect to the number of dialogues used in training. The success 
rate is converged after 10k dialogues under the None SLU error 

level, under the Low and High case, the policy needs another 5k 
dialogues to converge. Nevertheless, the number of dialogues 
required to converge is much smaller than the traditional MDP-
RL policy which needs approximately 90k~700k dialogues [8]. 
It shows our dialogue manager with deep Q-learning 
economically trains a policy with small size of dialogues.  

The experimental results suggest that by optimizing the 
policy in deep RL algorithm, dialogue agent can be trained 
automatically to successfully complete a dialogue within much 
shorter turns and to be more robust to SLU error than the rule-
based policy. In addition, our proposed model requires even 
smaller size of train data to learn the best action. 

VI. CONCLUSION  
In this paper, we propose the dialogue manager by 

optimizing the dialogue policy using deep Reinforcement 
Learning algorithm. It shows the deep RL policy is more robust 
to SLU error and flexible to complex domain of dialogues than 
the rule-based policy. 
  

TABLE V.          COMPARATIVE RESULTS IN DSTC3DOMAIN. 

SLU Error 
Level Policy Dialogue 

Success Rate 
Average 

Dialog Turns 

None 
Rule-based 100% 8.58 
Deep RL 99.16% 5.84 

Low 
Rule-based 91.49% 8.16 
Deep RL 95.15% 6.86 

High 
Rule-based 52.49% 11.53 
Deep RL 86.85% 8.05 

 

TABLE IV.       COMPARATIVE RESULTS IN DSTC2 DOMAIN. 

SLU Error 
Level Policy Dialogue 

Success Rate 
Average 

Dialog Turns 

None 
Rule-based 100% 7.42 
Deep RL 99.38% 5.84 

Low 
Rule-based 85.57% 7.47 
Deep RL 90.35% 7.74 

High 
Rule-based 77.14% 7.37 
Deep RL 89.55% 8.16 

 

Algorithm 1 – Rule-based dialogue policy. 
1:  G ← the ‘goal’ component of the state tracker output. 
2:  R ← the ‘requested slot’ component of the state tracker output. 
3:  S ← the DB query result with constrains in G. 
4:  𝐴W: placeholder for output system dialogue acts. 
5:  if length(S) = 0 then 
6:      𝐴W=canthelp(slot=value), fill slot=value using G. 
7:  if length(G) < 2 then 
8:      𝐴W=request(slot), fill slot using slots that not yet included in G. 
9:  else: 
10:     venue=random(S) 
11:     𝐴W=offer(name=venue.name) 
12:     for slot in R do 
13:         𝐴W=𝐴W+inform(venue.slot) 
14: output system response 𝐴W. 

 
 

Fig. 2. The Success Rate of Dialogues in Different SLU Errors. 

 

TABLE III.         SLU ERROR RATE OF DSTC3 CORPORA 

SLU Error Level Top-1 Error Rate Top-10 Error Rate 
None 0% 0% 
Low 16.17% 6.78% 
High 31.22% 19.43% 

 

TABLE II.               SLU ERROR RATE OF DSTC2CORPORA 

SLU Error Level Top-1 Error Rate Top-10 Error Rate 
None 0% 0% 
Low 29.02% 16.69% 
High 36.98% 23.71% 

* The “Top-1 Error Rate” means the probability that the ground truth 
dialogue acts are not presented in Top-1 SLU result. Similarly, the “Top-10 
Error Rate” means the probability that the ground truth dialogue acts are not 
presented in Top-10 SLU result. 
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APPENDICES 
  

APPENDIX I.    SLOTS IN DSTC2 (RESTAURANT INFORMATION DOMAIN) 

Slot User may give as a constraint? 
area Yes, 5 possible values. 
food Yes, 91 possible values. 
name Yes, 113 possible values. 

pricerange Yes, 3 possible values. 
addr No 

phone No 
postcode No 
signature No 

 

APPENDIX II.    SLOTS IN DSTC3 (TOURIST INFORMATION DOMAIN) 

Slot User may give as a constraint? 
area Yes, 15 possible values. 

children allowed Yes, 2 possible values. 
food Yes, 28 possible values. 

has internet Yes, 2 possible values. 
has tv Yes, 2 possible values. 
name Yes, 163 possible values. 
near Yes, 52 possible values. 

pricerange Yes, 4 possible values. 
type Yes, 3 possible values. 
addr No 

phone No 
postcode No 

price No 
 



APPENDIX III.    SYSTEM ACTIONS AND CORRESPONDING EXAMPLE UTTERANCES. 

Dialogue Act 1 Dialogue Act 2 Dialogue Act 3 Intended Meaning of System’s Action 
select(pricerange=$x) select(pricerange=$y)  Do you want an expensive or cheap restaurant? 
select(food=$x) select(food=$y)  Do you want an Indian or French restaurant? 
select(area=$x) select(area=$y)  Do you want a restaurant in south or north?  
request(pricerange)   Which price range do you want? 
request(food)   Which food do you want? 
request(area)   Which area do you want? 
request(pricerange) impl-conf(food=$x)  There are restaurants that serve French food, which price range 

do you want? 
request(pricerange) impl-conf(area=$x)  You want restaurants in north, which price range do you want? 
request(food) impl-conf(pricerange=$x)  You want expensive food, which food do you want? 
request(food) impl-conf(area=$x)  There are restaurants in East, which food do you want? 
request(area) impl-conf(pricerange=$x)  There are restaurants in East, which price range do you want? 
request(area) impl-conf(food=$x)  You want Korean food, which price range do you want? 
request(pricerange) impl-conf(food=$x) impl-conf(area=$y) There are restaurants that serve Chinese food in East, which 

price range do you want? 
request(food) impl-conf(pricerange=$x) impl-conf(area=$y) There are restaurants that serve moderate price range in south, 

which food do you want? 
request(area) impl-conf(pricerange=$x) impl-conf(food=$y) There are restaurants that serve expensive Italian food, which 

area do you want? 
offer(name=$x)   “Tree house” is a good restaurant. 
offer(name=$x) inform(pricerange=$y)  “Tree house” is a moderate priced restaurant. 
offer(name=$x) inform(food=$y)  “Tree house” is a good place and they serve Italian food. 
offer(name=$x) inform(area=$y)  “Tree house” is in west area. 
offer(name=$x) inform(phone=$y)  The phone number of “Tree house” is 010-0000-5059. 
offer(name=$x) inform(postcode=$y)  The postcode of “Tree house” is 157-840. 
offer(name=$x) inform(addr=$y)  “Tree house” is located at Westin Bayshore. 
offer(name=$x) inform(signature=$y)  The signature dish of “Tree house” is Vongole pasta. 
offer(name=$x) inform(pricerange=$y) inform(food=$z) “Tree house” serves expensive Italian food. 
offer(name=$x) inform(pricerange=$y) inform(area=$z)  
offer(name=$x) inform(pricerange=$y) inform(phone=$z)  
offer(name=$x) inform(pricerange=$y) inform(postcode=$z)  
offer(name=$x) inform(pricerange=$y) inform(addr=$z)  
offer(name=$x) inform(pricerange=$y) inform(signature=$z)  
offer(name=$x) inform(food=$y) inform(area=$z)  
offer(name=$x) inform(food=$y) inform(phone=$z)  
offer(name=$x) inform(food=$y) inform(postcode=$z)  
offer(name=$x) inform(food=$y) inform(addr=$z)  
offer(name=$x) inform(food=$y) inform(signature=$z)  
offer(name=$x) inform(area=$y) inform(phone=$z)  
offer(name=$x) inform(area=$y) inform(postcode=$z)  
offer(name=$x) inform(area=$y) inform(addr=$z)  
offer(name=$x) inform(area=$y) inform(signature=$z)  
offer(name=$x) inform(postcode=$y) inform(phone=$z)  
offer(name=$x) inform(postcode=$y) inform(addr=$z)  
offer(name=$x) inform(phone=$y) inform(signature=$z)  
offer(name=$x) inform(phone=$y) inform(addr=$z)  
offer(name=$x) inform(signature=$y) inform(addr=$z)  
expl-conf(pricerange=$x)   You want to find an expensive restaurant, right? 
expl-conf(food=$x)   You want to find a Mexica restaurant, right? 
expl-conf(area=$x)   You want to find a restaurant in south, right? 
canthelp(pricerange=$x)   There is no restaurant serving low priced food. 
canthelp(food=$x)   There is no restaurant serving Korean food. 
canthelp(area=$x)   There is no restaurant in West 
repeat()   I am not sure what you just said, can you repeat that? 

  



APPENDIX IV. EXAMPLE DIALOGUES OF RULE-BASED POLICY WITH HIGH SLU ERROR RATE (IN DSTC2 DOMAIN). 

Turn No. Speaker Dialogue acts (Semantic form) Intended Meaning (Surface form) 
0 System welcomemsg() How can I help you ? 
1 User inform(area=centre) Any restaurant in the centre area? 
1 System request(pricerange) What pricerange do you want? 
2 User inform(pricerange=moderate) Moderate. 
2 System request(pricerange) What pricerange do you want? 
3 User inform(pricerange=moderate) I want moderate priced restaurant. 

3 System 
offer(name=sesame restaurant)                       
inform(pricerange=moderate)                       
inform(area=centre) 

“Sesame restaurant” is located at centre, with a moderate pricerange. 

4 User request(food) What kind of food do they serve? 

4 System offer(name=sesame restaurant)                       
inform(food=spanish) 

“Sesame restaurant” serves Spanish food. 

5 User inform(food=romanian) Romanian. 

5 System offer(name=sesame restaurant)                       
inform(food=spanish) 

“Sesame restaurant” serves Spanish food. 

6 User inform(food=romanian) How about Romanian restaurant? 

6 System 
offer(name=eraina)                       
inform(pricerange=moderate)                       
inform(food=romanian) 

“Eraina” serves moderate priced Romanian food. 

7 User request(postcode) What is the postcode? 

7 System offer(name=eraina)                       
inform(postcode=336-404) 

The postcode of “Eraina” is 336-404. 

8 User request(signature) What is the signature dish? 

8 System offer(name=eraina)                       
inform(signature=flat_bone) 

signature dish of “Eraina” is “Flat Bone”. 

9 User request(addr) What is the address? 

9 System offer(name=eraina)                       
inform(addr=3791 Charles Trace Suite) 

The address is 3791 Charles Trace Suite. 

10 User thankyou() Thanks! 
10 System bye() Bye! 

 
 
 

APPENDIX V. EXAMPLE DIALOGUES OF DEEP RL POLICY WITH HIGH SLU ERROR RATE (IN DSTC2 DOMAIN). 

Turn No. Speaker Dialogue act (Semantic form) Utterance (Surface form) 
0 System welcomemsg() How can I help you ? 

1 User inform(pricerange=cheap) 
inform(food=indian) I want cheap Indian food. 

1 System offer(name=panahar) 
inform(area=west) “Panahar” is a good place in west area. 

2 User inform(area=south) South area. 

2 System offer(name=the river bar steakhouse) 
inform(area=east) “the river bar steakhouse” is in east area. 

3 User inform(area=south) I want south area. 
3 System canthelp(pricerange=cheap) I’m sorry, but there is no place in cheap pricerange. 
4 User inform(pricerange=moderate) How about moderate pricerange? 
4 System canthelp(food=indian) I’m sorry, but there is no Indian restaurant in this area. 
5 User inform(food=thai) Find me Thai restaurant. 
5 System canthelp(food=indian) I’m sorry, but there is no Indian restaurant area. 
6 User inform(food=thai) Thai restaurant. 

6 System 
offer(name=venue) 
inform(food=thai) 
inform(area=south) 

“Venue” is a Thai restaurant in south area. 

7 User request(postcode) Postcode? 

7 System 
offer(name=venue)                      
inform(postcode=370-356) 
inform(signature=picnic_shoulder) 

The postcode is 370-356 and their signature dish is “Pinic Shoulder”. 

9 User request(addr) What is the address? 

9 System offer(name=venue) 
inform(addr=9558 Ramirez Villages Apt.) The address is 9558 Ramirez Villages Apt. 

10 User thankyou() Thankyou! 
10 System bye() Bye! 

 
 


